
Extended Abstract Track
Extended Abstract Track 1–11, 2023 Symmetry and Geometry in Neural Representations

Data Augmentations in Deep Weight Spaces

Aviv Shamsian∗1 David W. Zhang∗3 Aviv Navon1 Yan Zhang4 Miltiadis Kofinas3

Idan Achituve1 Riccardo Valperga3 Gertjan J. Burghouts5 Efstratios Gavves3

Cees G. M. Snoek3 Ethan Fetaya1 Gal Chechik1,6 Haggai Maron2,6

Bar Ilan University1 Technion2 University of Amsterdam3 Samsung - SAIT AI Lab, Montreal 4 TNO 5 NVIDIA6

Abstract

Learning in weight spaces, where neural networks process the weights of other deep neural
networks, has emerged as a promising research direction with applications in various fields,
from analyzing and editing neural fields and implicit neural representations, to network
pruning and quantization. Recent works designed architectures for effective learning in
that space, which takes into account its unique, permutation-equivariant, structure. Un-
fortunately, so far these architectures suffer from severe overfitting and were shown to
benefit from large datasets. This poses a significant challenge because generating data for
this learning setup is laborious and time-consuming since each data sample is a full set
of network weights that has to be trained. In this paper, we address this difficulty by
investigating data augmentations for weight spaces, a set of techniques that enable gener-
ating new data examples on the fly without having to train additional input weight space
elements. We first review several recently proposed data augmentation schemes and divide
them into categories. We then introduce a novel augmentation scheme based on the Mixup
method. We evaluate the performance of these techniques on existing benchmarks as well
as new benchmarks we generate, which can be valuable for future studies.

1. Introduction

Learning in deep weight spaces is the problem of training neural networks for processing
the weights of other deep neural networks – a problem that has recently gathered signif-
icant interest (Eilertsen et al., 2020; Unterthiner et al., 2020; Andreis et al., 2023). The
focus in recent work has largely been on the development of novel architectures that take
into consideration the permutation symmetry of neurons (Navon et al., 2023; Zhou et al.,
2023a,b; Zhang et al., 2023). These architectures have demonstrated promising results on
multiple benchmarks, significantly outperforming earlier näıve approaches.

However, there is still a significant gap between the results obtained by such equivari-
ant networks operating on Implicit Neural Representations (INRs) and those obtained by
applying standard deep models such as CNNs and MLPs, which take as input the original
image (or other raw signal) representation. For example, current state-of-the-art models
for processing INRs achieve only 16% accuracy on the ModelNet40 3D shape classification
benchmark, while neural networks operating on the same data, but represented using a
point cloud, achieve over 90% accuracy (Atzmon et al., 2018; Wang et al., 2019).

To understand this problem, we first quantify the generalization error when learning
with INRs: Figure 1 demonstrates that existing architectures suffer from severe overfitting

* Equal contribution

© 2023 A. Shamsian et al.



Extended Abstract Track
Shamsian et al.

(1) Training with 1 view per INR (2) Training with 10 views per INR

Figure 1: Overfitting of weight space architectures on the ModelNet40 dataset : We visualize
train and test losses for DWSNets (Navon et al., 2023) and graph-based architec-
tures (Zhang et al., 2023) on the ModelNet40 datasets with 1 or 10 trained input
networks per point cloud (views). Notably, both methods tend to overfit early
during training, even when using more data.

(see details in Section 2). A possible explanation for this finding is that previous equivari-
ant architectures account for the permutation symmetries in the weight space, but remain
sensitive to other types of variability present in weight spaces. These include, for example,
scaling transformations, weight perturbations, and more. While it is possible to bridge
the generalization gap by collecting more data, this is challenging when learning in weight
spaces, where generating any data sample requires training a deep neural network.

To alleviate this problem and effectively increase the number of training examples with-
out generating more data, we provide the first study of data augmentation schemes for
weight spaces: we study simple transformations that can be applied to input samples
(weight space elements) to achieve more diversity while preserving the functions repre-
sented by those weights. Data augmentation schemes are widely used and heavily studied
for common data types like images (Shorten and Khoshgoftaar, 2019). For weight spaces,
augmentations are challenging and unexplored, in part, due to their symmetry structure.

We first propose a taxonomy of known weight space augmentation schemes. (i) input-
space augmentation, transformations of weight space elements that reflect simple transfor-
mations in the input space, like rotating a 3D object by a linear transformation of its 3D
INR; (ii) generic augmentations, like adding noise, feature masking or dense feature Mixup
(applying Mixup to the representation in the penultimate layer). See also (Zhang et al.,
2017; Zhou et al., 2023b). In addition, we propose (iii) augmentations inspired by activation
functions, a novel family of augmentations that exploit activation symmetries.

We then develop Weight-Space Mixup, a novel data augmentation scheme based on
generalizing the Mixup method (Zhang et al., 2017) to weight spaces. Unlike mixup for
dense vectors and images, applying mixup directly to weight space elements is challenging.
A crucial reason for that is that due to the permutation symmetries of weight spaces, the
weights of two independently trained models are rarely aligned, and directly averaging them
may not yield an appropriate model (Ainsworth et al., 2022). We address this difficulty and
develop several variants of weight space mixup, building on recent works in weight-space
alignment algorithms (Ainsworth et al., 2022; Peña et al., 2023).

Our results indicate that data augmentation schemes, and specifically our proposed
Weight-Space Mixup method, can enhance the accuracy of weight space architectures by up

2



Extended Abstract Track
Data Augmentations in Deep Weight Spaces

to 18%. This improvement is equivalent to reducing the required amount of generated data
by almost 10×, which saves countless hours of computation and electricity consumption.
We also contribute two new benchmarks on both image and 3D modalities.

2. Overfitting in deep weight spaces

In this section, we show that Weight space networks, which operate on INRs, significantly
underperform compared to their counterparts that operate on the original data space (e.g.,
point clouds or images). We attribute this performance gap primarily to an overfitting
problem in deep weight spaces. In order to validate this, we train two different weight space
models DWSNet (Navon et al., 2023) and GNN (Zhang et al., 2023) on ModelNet40 INR
datasets with 1 or 10 views per object, where by views we mean differently initialized INRs
that fit the same object in the original dataset. In Figure 1 (left panel), we observe that
when training with a single view all runs start overfitting in the early stages of the training
process at around 5 − 10% of the total update steps. Training with 10 views per object
(Figure 1 right panel) somewhat alleviates the overfitting problem and can be seen as a
type of data augmentation. We note that although the gap between the train and test error
becomes smaller, the overfitting problem still remains. Furthermore, generating 10 views
per object requires substantial computing time. Next, we consider alternative augmentation
methods that can be applied directly to weight space elements.

3. A taxonomy of augmentations for weight-space elements

We present three families of augmentation schemes for weight spaces, and use these schemes
to categorize previously proposed augmentation schemes.

Input-space augmentations. Data augmentations like random rotations, translations,
and scalings are frequently used when learning image and 3D data. As shown in Navon
et al. (2023), in many cases, these augmentations can be applied to INRs by applying the
relevant geometric transformations to the input coordinates of the INR. As an example,
rotating the object represented by an INR by a random rotation R can be accomplished by
replacing W1, the first weight matrix of the INR, with W1R.

Generic augmentations. General data augmentation techniques are augmentation tech-
niques that can be applied to any type of data. This category includes several methods such
as dropout (Srivastava et al., 2014), which randomly deactivates a fraction of weights dur-
ing training, quantile dropout, which removes weights with magnitudes below a defined
threshold, and the addition of random Gaussian noise to the input weights.

Augmentations inspired by activation functions. In many cases, activation func-
tions induce symmetries that are not easy to incorporate into the weight space archi-
tecture. We propose three activation space augmentations that exploit this symmetry.
For ReLU activation, we can arbitrarily scale the weights 1

cWi+1ReLU(cWix+cbi)+bi+1 =
Wi+1ReLU(Wix+bi)+bi+1 with some c∈R+. In SIREN (Sitzmann et al., 2020), the sinu-
soidal activation function induces two additional symmetries. First, since the function is
odd we can negate the weight and biases of layer i and the weight of the following layer
i+1 as Wi+1Sine(Wix+b) = −Wi+1Sine(−Wix−b). The second symmetry results from the

3



Extended Abstract Track
Shamsian et al.

shift of the phase in an even or odd multiple of π, more formally: Wi+1Sine(Wix + b) =
(−1)kWi+1Sine(Wix+b+kπ). for k ∈ Z. We incorporate these symmetries through random
data augmentations and refer to them as SIREN negation and SIREN bias respectively.

4. Mixup in weight space

Mixup (Zhang et al., 2017) is a popular data augmentation technique where the basic idea
is to randomly interpolate a pair of input images x1, x2 and their ground truth labels y1, y2
to create a new training example (λx1+(1 − λ)x2, λy1+(1−λ)y2). In the last few years,
Mixup was successfully generalized to several data types such as point clouds and graphs
(Chen et al., 2020; Achituve et al., 2021; Han et al., 2022).

Alignment and interpolation in weight spaces. To design a mixup method for wight
spaces, we first need to understand the weight space alignment problem: given two weight

space elements x1 = [W
(l)
1 , b

(l)
1 ] and x2 = [W

(l)
2 , b

(l)
2 ], l = 1, . . . ,M , this problem seeks

a sequence of permutations p = (P1, . . . , PM−1) that minimizes ∥x1 − p · x2∥, where p · x2
applies the permutations to the weight vectors without changing the underlying function, as
in Equation 5 in Navon et al. (2023). Intuitively, this problem seeks permutations such that
the weights of these networks are as close as possible when compared directly. Several recent
works (Entezari et al., 2022; Ainsworth et al., 2022; Peña et al., 2023; Navon et al., 2023)
have shown that the interpolation between a weight vector x, to the optimally permuted
version of the other vector p ·x′ has a property called linear mode connectivity, which states
that the loss value on this path is only marginally worse compared to its endpoints. This is
in contrast to weights obtained from the direct interpolation between x, x′ which produces
a significant increase in this loss.

Weight-space mixup. The naive (standard) weight-space mixup is formally defined as

an interpolation between two weight space samples [W
(l)
1 , b

(l)
1 ] and [W

(l)
2 , b

(l)
2 ] with λ ∼

U(0, 1): W (l) = λW
(l)
1 +(1−λ)W

(l)
2 , b(l) = λb

(l)
1 +(1−λ)b

(l)
2 , where the weight parameter λ

is randomly drawn from a uniform distribution.
Next, we define the randomized weight space mixup in which random permutations are

applied to one of the input weights before mixing two samples. While the weights, in
this case, are still not aligned (with high probability), we do get a much greater degree of
diversity than we would obtain with the standard approach.

Lastly, we define matching based weight space mixup where we use a sequence of per-
mutation matrices p to first align the weights and then perform the interpolation. As the
weight space alignment problem is NP-hard, we obtain an approximate alignment using the
Weight Matching algorithm suggested by (Ainsworth et al., 2022).

5. Experiments

We evaluate various weight-space augmentations for classifying INRs. Specifically, we create
INR datasets for ModelNet40 (3D point clouds) and FMNIST (2D greyscale images). We
generate 10 different INRs – referred to as 10 different views – for each example in the
original dataset. We compare each augmentation individually for 1 and 10 views and use
DWS (Navon et al., 2023) and GNN (Zhang et al., 2023) as weight-space architectures. We
report the average accuracy and standard deviations for 3 random seeds. More details on
the experimental setup and data generation processes are in Appendix C, B.

4



Extended Abstract Track
Data Augmentations in Deep Weight Spaces

Table 1: ModelNet40 and FMNIST results: test accuracy results for 1 and 10 views.

Augmentation type Model ModelNet40 FMNIST

1 View 10 View 1 View 10 View

No augmentation DWS 16.17± 0.25 30.25± 0.95 68.30± 0.62 76.01± 1.20
No augmentation GNN 8.82± 1.08 34.51± 1.24 68.84± 0.41 79.58± 3.01

Translate DWS 18.18± 0.97 31.17± 0.02 67.90± 0.24 77.61± 0.36
Rotation DWS — — 68.55± 0.28 77.04± 0.47
Scale DWS 16.41± 0.57 30.54± 0.72 67.99± 0.14 75.77± 1.09
Gaussian noise DWS 14.10± 0.71 25.31± 1.78 68.53± 0.09 77.60± 0.13
SIREN bias DWS 4.69± 0.10 4.90± 0.01 58.20± 0.01 62.21± 0.55
SIREN negation DWS 20.14± 0.98 32.31± 0.70 71.40± 0.29 77.71± 1.38
Dropout DWS 11.43± 2.44 14.71± 1.14 68.48± 0.14 75.57± 1.91
Quantile dropout DWS 15.13± 2.45 29.88± 0.62 68.72± 0.27 76.22± 0.72
Translate GNN 8.17± 0.81 34.93± 1.31 70.17± 1.26 83.83± 0.25
Rotation GNN — — 69.35± 2.18 83.72± 1.14
Scale GNN 8.58± 0.65 34.70± 5.19 68.96± 1.46 83.67± 0.19
Gaussian noise GNN 9.06± 0.27 32.82± 1.14 77.55± 0.33 81.28± 0.50
SIREN bias GNN 11.63± 2.48 34.32± 1.57 68.09± 0.49 77.20± 1.03
SIREN negation GNN 11.41± 3.22 37.93± 2.26 72.74± 4.29 82.36± 3.66
Dropout GNN 8.10± 0.43 18.04± 1.24 68.55± 1.21 79.72± 1.35
Quantile dropout GNN 8.12± 0.85 34.36± 1.14 69.96± 2.08 83.78± 0.76

MixUp DWS 26.96± 0.91 31.92± 0.37 74.36± 1.17 78.58± 0.20
MixUp + random perm. DWS 26.62± 0.18 33.55± 1.40 73.89± 0.89 78.04± 1.02
Alignment + MixUp DWS 27.40± 0.97 33.33± 0.43 75.67± 0.36 79.41± 0.56
MixUp GNN 20.45± 3.82 42.25± 3.83 80.18± 0.59 82.20± 0.52
MixUp + random perm. GNN 24.46± 2.92 41.67± 4.55 78.45± 2.29 82.24± 0.68
Alignment + MixUp GNN 26.88± 1.75 42.83± 4.18 78.80± 2.12 82.94± 0.31

Table 1 showcases the effectiveness of on-the-fly weight space data augmentation schemes.
Notably, Mixup augmentations with a single view are comparable to training
with 10× more data on both datasets: ModelNet40 and FMNIST. Furthermore, data
augmentation is still effective with 10 views. Augmentations applied in the input space,
which are limited to the first layer of the INR, are less effective compared with other types
of augmentations that modify the weights in all the layers. Overall, the effectiveness of
input-space and generic augmentations varies between the models and also between the
datasets. In contrast, Weight Space Mixup provides consistent improvements, with the
alignment-based version frequently outperforming other variants.

6. Conclusion

This paper examines the overfitting issue associated with weight space architectures and
proposes novel weight space augmentation techniques that mitigate this issue and enhance
model performance. Notably, our experiments demonstrate that training with these aug-
mentations has comparable results to training with substantially larger datasets.
Limitations. It is important to note that weight space augmentations may vary in effective-
ness across different datasets and tasks, which requires further investigation. In addition,
some augmentations, such as Mixup with alignment, may require additional computational
overhead that may be prohibitive in some resource-constrained environments.
Acknowledgements. HM is the Robert J. Shillman Fellow, and is supported by the Israel
Science Foundation through a personal grant (ISF 264/23) and an equipment grant (ISF
532/23).

5



Extended Abstract Track
Shamsian et al.

References

Idan Achituve, Haggai Maron, and Gal Chechik. Self-supervised learning for domain adap-
tation on point clouds. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision, pages 123–133, 2021.

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging
models modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Bruno Andreis, Soro Bedionita, and Sung Ju Hwang. Set-based neural network encoding.
arXiv preprint arXiv:2305.16625, 2023.

Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural networks
by extension operators. arXiv preprint arXiv:1803.10091, 2018.

Chengtai Cao, Fan Zhou, Yurou Dai, and Jianping Wang. A survey of mix-based data
augmentation: Taxonomy, methods, applications, and explainability. arXiv preprint
arXiv:2212.10888, 2022.

Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal Mettes, Pengwan
Yang, and Cees GM Snoek. Pointmixup: Augmentation for point clouds. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part III 16, pages 330–345. Springer, 2020.

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan
Rosenbaum. From data to functa: Your data point is a function and you can treat
it like one. In International Conference on Machine Learning, 2022. URL https:

//api.semanticscholar.org/CorpusID:249395684.

Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas Unger, and Anders Ynnerman.
Classifying the classifier: dissecting the weight space of neural networks. arXiv preprint
arXiv:2002.05688, 2020.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of per-
mutation invariance in linear mode connectivity of neural networks. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?

id=dNigytemkL.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmen-
tation for graph classification. In International Conference on Machine Learning, pages
8230–8248. PMLR, 2022.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji
Lakshminarayanan. Augmix: A simple data processing method to improve robustness
and uncertainty. arXiv preprint arXiv:1912.02781, 2019.

Hongyi Ling, Zhimeng Jiang, Meng Liu, Shuiwang Ji, and Na Zou. Graph mixup with soft
alignments. arXiv preprint arXiv:2306.06788, 2023.

6

https://api.semanticscholar.org/CorpusID:249395684
https://api.semanticscholar.org/CorpusID:249395684
https://openreview.net/forum?id=dNigytemkL
https://openreview.net/forum?id=dNigytemkL


Extended Abstract Track
Data Augmentations in Deep Weight Spaces

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. ArXiv,
abs/1711.05101, 2017. URL https://api.semanticscholar.org/CorpusID:3312944.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai
Maron. Equivariant architectures for learning in deep weight spaces. arXiv preprint
arXiv:2301.12780, 2023.

Fidel A Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti,
Eric Granger, and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 20237–20246, 2023.

Konstantin Schürholt, Diyar Taskiran, Boris Knyazev, Xavier Gir’o i Nieto, and Damian
Borth. Model zoos: A dataset of diverse populations of neural network models.
ArXiv, abs/2209.14764, 2022. URL https://api.semanticscholar.org/CorpusID:

252595733.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of big data, 6(1):1–48, 2019.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. Implicit neural representations with periodic activation functions.
ArXiv, abs/2006.09661, 2020. URL https://api.semanticscholar.org/CorpusID:

219720931.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin.
Predicting neural network accuracy from weights. arXiv preprint arXiv:2002.11448, 2020.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graph-
ics (tog), 38(5):1–12, 2019.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 1912–1920,
2015.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. ArXiv, abs/1708.07747, 2017. URL https:

//api.semanticscholar.org/CorpusID:702279.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with local-
izable features. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 6023–6032, 2019.

7

https://api.semanticscholar.org/CorpusID:3312944
https://api.semanticscholar.org/CorpusID:252595733
https://api.semanticscholar.org/CorpusID:252595733
https://api.semanticscholar.org/CorpusID:219720931
https://api.semanticscholar.org/CorpusID:219720931
https://api.semanticscholar.org/CorpusID:702279
https://api.semanticscholar.org/CorpusID:702279


Extended Abstract Track
Shamsian et al.

David W Zhang, Miltiadis Kofinas, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, and
Cees GM Snoek. Neural networks are graphs! graph neural networks for equivariant
processing of neural networks. 2nd Annual Topology, Algebra, and Geometry in Machine
Learning Workshop at ICML, 2023.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Allan Zhou, Kaien Yang, Kaylee Burns, Yiding Jiang, Samuel Sokota, J Zico Kolter,
and Chelsea Finn. Permutation equivariant neural functionals. arXiv preprint
arXiv:2302.14040, 2023a.

Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota,
J Zico Kolter, and Chelsea Finn. Neural functional transformers. arXiv preprint
arXiv:2305.13546, 2023b.

8



Extended Abstract Track
Data Augmentations in Deep Weight Spaces

Appendix A. Previous work

Learning in deep weight spaces Recently there has been a growing interest in applying
deep learning architectures directly to neural network weights. The attention to this domain
was brought up by studies that presented weight-space related datasets (Dupont et al., 2022;
Schürholt et al., 2022). Others (Sitzmann et al., 2020) showed the possibility of representing
a data point as an implicit neural representation on several tasks from classification to
generation. These datasets raised the motivation to study how to learn in deep weight
spaces. Early methods proposed using simple architectures such as MLPs and transformers
to predict test errors or the hyperparameters that were used for training input networks
(Eilertsen et al., 2020; Unterthiner et al., 2020). Recently, Navon et al. (2023) presented
the first neural architecture that accounts for natural permutation symmetries of weight
spaces and demonstrated significant performance improvements over prior methods. Zhou
et al. (2023a) proposed a similar approach, which was later enhanced by the addition of
attention mechanisms (Zhou et al., 2023b). Finally, Zhang et al. (2023) proposed a GNN
architecture to process neural networks modeled as computational graphs.

Data augmentation in deep learning Data augmentation is an essential technique in
deep learning that plays a crucial role in mitigating overfitting while enhancing the gener-
alization capabilities of NNs. Data augmentation helps the model learn more robust and
invariant features. Various techniques are employed to achieve this, such as geometric trans-
formations like rotation, scaling, and translation which make the model robust to changes
in object orientation and position. Additionally, color-based augmentations like brightness
adjustments, contrast changes, and color jittering contribute to improved generalization by
increasing the model’s tolerance to variations in lighting conditions. Dropout (Srivastava
et al., 2014) is another prominent data augmentation approach that randomly deactivates
weights during training. These methods collectively enhance the model’s ability to gener-
alize from limited training data and reduce the risk of overfitting, resulting in more robust
and accurate deep learning models.

Mixup Mixup is a data augmentation method that blends two or more training samples
to create new synthetic instances (Cao et al., 2022). Mixup (Zhang et al., 2017) operates by
taking a weighted linear combination of two input samples, where both the input data and
their corresponding labels are mixed. The resulting mixed data point contains characteris-
tics of both original samples, effectively generating a smooth interpolation between them.
Various mixup variants have been proposed, including CutMix (Yun et al., 2019), which
combines two images by cutting and pasting rectangular regions; and AugMix (Hendrycks
et al., 2019), which applies multiple augmentation operations before mixing to further di-
versify the dataset. Recently, several works (Ling et al., 2023) proposed performing Mixup
after first aligning the feature or input space, resulting in smoother interpolation between
the mixed objects.

Appendix B. Datasets

The increasing usage of INRs in many machine-learning domains, specifically in images and
3D objects, raises the need for INR benchmarks. Implicit representations, such as neural
radiance fields and neural implicit surfaces, offer a more flexible and expressive way to

9



Extended Abstract Track
Shamsian et al.

model complex 3D scenes and objects. However, as these techniques gain traction, it be-
comes crucial to establish standardized benchmarks to assess and compare the performance
of architectures designed for weight space data. To address this issue, we present new INR
classification benchmarks based on ModelNet40 (Wu et al., 2015) and Fashion-MNIST (Xiao
et al., 2017) datasets. We use the SIREN (Sitzmann et al., 2020) architecture, i.e. MLP
with sine activation, and fit each data point in the original dataset. To negate the possi-
bility of canonical representation that may lead to globally aligned data representation, we
randomly initialize the weights for every generated INR. In the case of ModelNet40, INRs
are generated through training an MLP to accurately predict the signed distance function
values of a 3D object given a set of 3D point clouds. For Fashion-MNIST an MLP is trained
to map from the 2D xy-grid to the corresponding gray level value in the original image. We
fit 10 unique INRs, namely views, per sample in the original dataset resulting in a total of
123K and 700K INRs for ModelNet40 and Fashion-MNIST respectively.

Appendix C. Experimental Details

DWS. In all experiments, we use DWS (Navon et al., 2023) network with 4 hidden layers
and hidden dimension of 128. We optimized the network using a 5e− 3 learning rate with
AdamW (Loshchilov and Hutter, 2017) optimizer.

GNN. For the GNN, we use the version of Relation Transformer presented in Zhang
et al. (2023) with 4 hidden layers, node dimension of 64, and edge dimension of 32. We
optimized the network using a 1e − 3 learning rate with AdamW (Loshchilov and Hutter,
2017) optimizer and a 1000 steps warmup schedule.

General. We optimized the model for 250 epochs for the ModelNet40 experiments and
300/100 epochs for the FMNIST 1/10 views respectively. Additionally, we utilize the val-
idation set for early stopping, i.e. selecting the best model w.r.t validation accuracy. We
repeat all experiments using 3 random seeds and report the average classification accuracy
along with the standard deviation.

Appendix D. Weight space augmentation details

input space-based augmentations. Similar to rotation, scaling the coordinates by a
factor s is equivalent to scaling the weights W1(sx) = (W1s)x. Furthermore, a translation
by an offset t can be absorbed into the bias W1(x + t) + b1 = W1x + (W1t + b1). These
augmentations are natural, but they only change the parameters of the first layer, so their
effectiveness may be limited.

General data augmentations. Dropout augmentation sets a parameter to 0 with prob-
ability pdrop. Quantile-based dropout first computes a threshold based on which it zeroes
out the q-th quantile that is closest to 0. Gaussian noise augmentation adds Gaussian
noise to all parameters with the standard deviation set in relation to the layer’s standard
deviation between the parameters.

10



Extended Abstract Track
Data Augmentations in Deep Weight Spaces

Appendix E. Datasets generation

Figure 2: Visualizing augmentations: Illus-
trating the influence of weight space
augmentations on the image Space.

Fashion-MNIST INRs. We fit an INR to
each image in the original dataset. We
split the INRs dataset into train, valida-
tion, and test sets of sizes 55K, 5K, and 10K
respectively. Each INR is a 3-layer MLP
network with a 32 hidden dimension, i.e.,
3 −→ 32 −→ 32 −→ 1. We train the INRs us-
ing the Adam optimizer for 1K steps with
a learning rate of 5e − 4. When the PSNR
of the reconstructed image from the learned
INR is greater than 40, we use early stop-
ping to reduce the generation time.

ModelNet40. We use the original split
presented in Wu et al. (2015) and fit an
INR for each data sample. We start by
converting the mesh object to a signed dis-
tance function (SDF) by sampling 250K
points near the surface. Next, we fit a 5-
layer INR with a hidden dim of 32, i.e.,
3 −→ 32 −→ 32 −→ 32 −→ 32 −→ 1 by solving a
regression problem. Given a 3 dimensional
input, the INR network predicts its SDF.
For the optimization, we use AdamW opti-
mizer with 1e−4 learning rate and perform
1000 update steps.

Appendix F. Visualization
of reconstructed images

Here, we investigate how augmentations ap-
plied to INR’s weights affect the image re-
constructed from the augmented INR. We
consider the FMNIST INR dataset and ap-
ply all the augmentations we explored in
this paper. Then we plot the reconstructed
images, shown in Figure 2.

11


	Introduction
	Overfitting in deep weight spaces
	A taxonomy of augmentations for weight-space elements
	Mixup in weight space
	Experiments
	Conclusion
	Previous work
	Datasets
	Experimental Details
	Weight space augmentation details
	Datasets generation
	Visualization of reconstructed images

