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Introduction

The basic paradigm of deep neural networks is repeatedly composing linear layers
interlaced with non-linear, element-wise acঞvaঞon funcঞons to create effecঞve pre-
dicঞve models.

When trying to learn a funcঞon (task) f that is known to be invariant to some group
of symmetries G (i.e., G-invariant funcঞon) it is common to use linear layers that
respect this symmetry, namely, invariant and/or equivariant linear layers. Networks
with invariant/equivariant linear layers with respect to some groupG will be referred
here as G-invariant networks, e.g., Figure 1.

Goal

When using these networks one important quesঞon arises: Can aG-invariant net-
work approximate an arbitrary conঞnuous G-invariant funcঞon?

The goal of this paper is to address this quesঞon for all finite permutaঞon groups
G ≤ Sn, where Sn is the symmetric group acঞng on [n] = {1, 2, . . . , n}.
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Examples

The archetypal examples of G-invariant networks are Convoluঞonal Neural
Networks (CNNs) [3] that are translaঞon equivariant.
Tasks involving point clouds or sets are in general Sn-invariant [5, 6].
Learning tasks involving interacঞon between different sets, where the input data
is tabular, requires dealing with different permutaঞons acঞng independently on
each set [1].
Tasks involving graphs and hyper-graphs lead to symmetries defined by tensor
products of permutaঞons [2, 4].

Contributions

1. We prove: any conঞnuous funcঞon invariant to an arbitrary permutaঞon
subgroup G ≤ Sn can be approximated on a compact set to an arbitrary precision
using a G-invariant network, using high-order tensors.

2. We prove a lower bound on the order d of tensors used in a G-invariant network
so to achieve universality.

3. We prove a necessary condiঞon on groups G ≤ Sn so that G-invariant networks,
using only first order tensors, are universal. First order tensors are interesঞng
since they lead to computaঞonally tractable algorithms.

Permutation action

In this paper we consider the case of symmetry defined by any subgroup of the
symmetric group, i.e., G ≤ Sn. The acঞon of G on x ∈ Rn used in this paper is
defined as

g · x = (xg−1(1), . . . , xg−1(n)), g ∈ G. (1)

The acঞon of G on tensors X ∈ Rnk×a (the last index, denoted j represents feature
depth) is defined similarly by

(g · X)i1...ik,j = Xg−1(i1)...g−1(ik),j, g ∈ G. (2)

The Figure illustrates the acঞon of g on tensors of order k = 1, 2, 3, where the per-
mutaঞon g is a transposiঞon of two numbers and is applied to each dimension of the
tensor.

Invariant networks architecture

A G-invariant funcঞon is a funcঞon f : Rn → R that saঞsfies
f (g · x) = f (x)

for all x ∈ Rn and g ∈ G.

A linear G-equivariant layer is an affine map L : Rnk×a → Rnl×b saঞsfying
L(g · X) = g · L(X)

for all g ∈ G, and X ∈ Rnk×a.

A linear G-invariant layer is an affine map h : Rnk×a → Rb saঞsfying
h(g · X) = h(X)

for all g ∈ G, and X ∈ Rnk×a.

A G-invariant network is a funcঞon F : Rn×a → R defined by
F = m ◦ h ◦ Ld ◦ σ ◦ · · · ◦ σ ◦ L1,

where Li are linearG-equivariant layers, σ is an acঞvaঞon funcঞon, h is aG-invariant
layer, and m is a Mulঞ-Layer Perceptron (MLP).

Figure 1. G-invariant network model. By construcঞon, G-invariant networks are G-invariant
funcঞons.

Universality of invariant networks

Theorem 1
Let f : Rn → R be a conঞnuous G-invariant funcঞon for some G ≤ Sn, and K ⊂
Rn a compact set. There exists a G-invariant network that approximates f to an
arbitrary precision on K .

The proof of Theorem 1 is construcঞve: given a G-invariant funcঞon f , it builds an
f-approximaঞng G-invariant network with hidden tensors X ∈ Rnd of order d, where
d = d(G) is a natural number depending on the group G. It can be shown that
d ≤ n(n−1)

2 for all G ≤ Sn.

The main idea is to approximate a finite generaঞng set of the ring of G-invariant
polynomials, which can be shown to be dense in the space of conঞnuousG-invariant
funcঞons on a compact domain.

A lower bound on equivariant layer order

We note that even using tensors X ∈ Rnd with order d = 2 could already be compu-
taঞonally challenging. We therefore ask whether we can use G-invariant networks
with lower order tensors without sacrificing approximaঞon power.

We show this is generally not the case; for some subgroups a minimal order of n−2
2 is

needed. Specifically, we prove the following for G = An, the alternaঞng group:
Theorem 2
If anAn-invariant network has the universal approximaঞon property then it consists
of tensors of order at least n−2

2 .

The basic idea behind this proof is that both Sn and An give rise to the same linear
equivariant layers for low order tensors. This implies that any An-invariant network
is also Sn-invariant. We use this fact in order to show that an An-invariant network
that uses only low order tensors cannot approximate the Vandermonde polynomial
V (x) = ∏

1≤i<j≤n(xi − xj) (which is An-invariant but not Sn-invariant).

Universality of first order networks

Although in general we cannot expect universal approximaঞon of G-invariant net-
works with inner tensor order smaller than n−2

2 , it is sঞll possible that for specific
groups of interest we can prove approximaঞon power with more efficient (i.e., lower
order inner tensors) G-invariant networks. Of specific interest are G-invariant net-
works that use only first order tensors.
Theorem 3
Let G ≤ Sn. If first order G-invariant networks are universal, then |[n]2/H| <
|[n]2/G| for any strict super-group G < H ≤ Sn.

|[n]2/G| is the number of equivalence classes of [n]2 defined by the relaঞon: (i1, i2) ∼
(j1, j2) if jℓ = g(iℓ), ℓ = 1, 2 for some g ∈ G. Intuiঞvely, this condiঞon asks that
super-groups of G have strictly be�er separaঞon of the double index space [n]2.
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