Introduction

The basic paradigm of deep neural networks is repeatedly composing linear layers interlaced with non-linear, element-wise activation functions to create effective predictive models.

When trying to learn a function (task) f that is known to be invariant to some group of symmetries G (i.e., G-invariant function) it is common to use linear layers that respect this symmetry, namely, invariant and/or equivariant linear layers. Networks with invariant/equivariant linear layers with respect to some group G will be referred here as G-invariant networks, e.g., Figure 1.

Goal When using these networks one important question arises: Can a G-invariant network approximate an arbitrary continuous G-invariant function? The goal of this paper is to address this question for all finite permutation groups $G \leq S_n$, where S_n is the symmetric group acting on $[n] = \{1, 2, \ldots, n\}$. Continuous Functions Continuous G-Invariant (approximable G-Invariant

with FC networks)

Examples

functions

- The archetypal examples of G-invariant networks are Convolutional Neural Networks (CNNs) [3] that are translation equivariant.
- Tasks involving point clouds or sets are in general S_n -invariant [5, 6].
- Learning tasks involving interaction between different sets, where the input data is tabular, requires dealing with different permutations acting independently on each set [1].
- Tasks involving graphs and hyper-graphs lead to symmetries defined by tensor products of permutations [2, 4].

Contributions

- 1. We prove: any continuous function invariant to an arbitrary permutation subgroup $G \leq S_n$ can be approximated on a compact set to an arbitrary precision using a G-invariant network, using high-order tensors.
- 2. We prove a lower bound on the order d of tensors used in a G-invariant network so to achieve universality.
- 3. We prove a necessary condition on groups $G \leq S_n$ so that G-invariant networks, using only first order tensors, are universal. First order tensors are interesting since they lead to computationally tractable algorithms.

On the Universality of Invariant Networks

¹Weizmann Institute of Science

networks

In this paper we consider the case of symmetry defined by any subgroup of the symmetric group, i.e., $G \leq S_n$. The action of G on $x \in \mathbb{R}^n$ used in this paper is defined as

$$g \cdot x = (x_{g^{-1}(1)}, \dots, x_{g^{-1}(n)}), \ g \in G.$$
 (1)

The action of G on tensors $X \in \mathbb{R}^{n^k \times a}$ (the last index, denoted j represents feature depth) is defined similarly by

$$(g \cdot \mathbf{X})_{i_1 \dots i_k, j} = \mathbf{X}_{g^{-1}}$$

The Figure illustrates the action of g on tensors of order k = 1, 2, 3, where the permutation g is a transposition of two numbers and is applied to each dimension of the tensor.

Invariant networks architecture

A G-invariant function is a function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies $f(g \cdot x) = f(x)$

for all $x \in \mathbb{R}^n$ and $g \in G$.

A linear G-equivariant layer is an affine map $L: \mathbb{R}^{n^k \times a} \to \mathbb{R}^{n^l \times b}$ satisfying $L(g \cdot \mathbf{X}) = g \cdot L(\mathbf{X})$

for all $g \in G$, and $\mathbf{X} \in \mathbb{R}^{n^k \times a}$.

A linear G-invariant layer is an affine map $h: \mathbb{R}^{n^k \times a} \to \mathbb{R}^b$ satisfying $h(g \cdot \mathbf{X}) = h(\mathbf{X})$

for all $g \in G$, and $\mathbf{X} \in \mathbb{R}^{n^k \times a}$.

A *G*-invariant network is a function $F : \mathbb{R}^{n \times a} \to \mathbb{R}$ defined by $F = m \circ h \circ L_d \circ \sigma \circ \cdots \circ \sigma \circ L_1,$

where L_i are linear G-equivariant layers, σ is an activation function, h is a G-invariant layer, and m is a Multi-Layer Perceptron (MLP).

Figure 1. G-invariant network model. By construction, G-invariant networks are G-invariant functions.

Haggai Maron 1 , Ethan Fetaya 23 , Nimrod Segol 1 & Yaron Lipman 1

²University of Toronto

³Vector Institute

(2)

Permutation action

 $^{-1}(i_1)...g^{-1}(i_k),j, \ g\in G.$

Theorem 1 Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous G-invariant function for some $G \leq S_n$, and $K \subset$ \mathbb{R}^n a compact set. There exists a G-invariant network that approximates f to an arbitrary precision on K.

The proof of Theorem 1 is constructive: given a G-invariant function f, it builds an f-approximating G-invariant network with hidden tensors $X \in \mathbb{R}^{n^d}$ of order d, where d = d(G) is a natural number depending on the group G. It can be shown that $d \leq \frac{n(n-1)}{2}$ for all $G \leq S_n$.

The main idea is to approximate a finite generating set of the ring of G-invariant polynomials, which can be shown to be dense in the space of continuous G-invariant functions on a compact domain.

A lower bound on equivariant layer order

We note that even using tensors $\mathbf{X} \in \mathbb{R}^{n^d}$ with order d = 2 could already be computationally challenging. We therefore ask whether we can use G-invariant networks with lower order tensors without sacrificing approximation power.

We show this is generally not the case; for some subgroups a minimal order of $\frac{n-2}{2}$ is needed. Specifically, we prove the following for $G = A_n$, the alternating group:

Theorem 2

If an A_n -invariant network has the universal approximation property then it consists of tensors of order at least $\frac{n-2}{2}$.

The basic idea behind this proof is that both S_n and A_n give rise to the same linear equivariant layers for low order tensors. This implies that any A_n -invariant network is also S_n -invariant. We use this fact in order to show that an A_n -invariant network that uses only low order tensors cannot approximate the Vandermonde polynomial $V(x) = \prod_{1 \le i \le j \le n} (x_i - x_j)$ (which is A_n -invariant but not S_n -invariant).

Although in general we cannot expect universal approximation of G-invariant networks with inner tensor order smaller than $\frac{n-2}{2}$, it is still possible that for specific groups of interest we can prove approximation power with more efficient (i.e., lower order inner tensors) G-invariant networks. Of specific interest are G-invariant networks that use only first order tensors.

Theorem 3
Let $G \leq S_n$. If first
$ [n]^2/G $ for any stric

 $|[n]^2/G|$ is the number of equivalence classes of $[n]^2$ defined by the relation: $(i_1, i_2) \sim 1$ (j_1, j_2) if $j_\ell = g(i_\ell)$, $\ell = 1, 2$ for some $g \in G$. Intuitively, this condition asks that super-groups of G have strictly better separation of the double index space $[n]^2$.

Universality of invariant networks

Universality of first order networks

st order G-invariant networks are universal, then $|[n]^2/H| < 1$ t super-group $G < H \leq S_n$.

References

evin Leyton-Brown, and Siamak s.	[4]	Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks. In <i>International Conference on Learning Representations</i> , 2019.
n, Brandon Anderson, and Shubhendu earning graphs.	[5]	Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. <i>Proc. Computer Vision and Pattern Recognition (CVPR), IEEE</i> , 1(2):4, 2017.
offrey E Hinton. Solutional neural networks. Sing systems, pages 1097–1105, 2012.	[6]	Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems, pages 3391–3401, 2017.

^[1] Jason S. Hartford, Devon R. Graham, Ke Ravanbakhsh. Deep models of interactions across set In ICML, 2018.

^[2] Risi Kondor, Hy Truong Son, Horace Pan Covariant compositional networks for le

arXiv preprint arXiv:1801.02144, 2018. [3] Alex Krizhevsky, Ilya Sutskever, and Geo Imagenet classification with deep conve In Advances in neural information process