The basic paradigm of deep neural networks is repeatedly composing linear layers interleaved with non-linear, element-wise activation functions to create effective predictive models. When trying to learn a function (task) f that is known to be invariant to some group of symmetries G (i.e., G-invariant function), it is common to use linear layers that respect this symmetry, namely, invariant and/or equivariant linear layers. Networks with invariant/equivariant linear layers with respect to some group G will be referred here as G-invariant networks, e.g., Figure 1.

Goal

When using these networks one important question arises: Can a G-invariant network approximate on arbitrary continuous G-invariant function?

The proof of Theorem 1 is constructive: given a G-invariant function f, it builds an f-approximating G-invariant network with hidden tensors $X \in \mathbb{R}^{d_0}$ of order d, where $d = d(G)$ is a natural number depending on the group G. It can be shown that $d = \frac{n}{2}$ for all $G \leq S_n$.

The main idea is to approximate a finite generating set of the ring of G-invariant polynomials, which can be shown to be dense in the space of continuous G-invariant functions on a compact domain.

A lower bound on equivariant layer order

We note that even using tensors $X \in \mathbb{R}^{d_0}$ with order $d = 2$ could already be computationally challenging. We therefore ask whether we can use G-invariant networks with lower order tensors without sacrificing approximation power.

We show this is generally not the case; for some subgroups a minimal order of $d \geq 3$ is needed. Specifically, we prove the following for $G = A_n$, the alternating group:

Theorem

If an A_n-invariant network has the universal approximation property then it consists of tensors of order at least $\frac{n}{2}$.

The basic idea behind this proof is that both S_n and A_n give rise to the same linear equivariant layers for low order tensors. This implies that any A_n-invariant network is also S_n-invariant. We use this fact in order to show that an A_n-invariant network that uses only low order tensors cannot approximate the Vandermonde polynomial $V(x) = \prod_{i=0}^{n-1} (x_i - x)$ (which is A_n-invariant but not S_n-invariant).

University of first order networks

Although in general we cannot expect universal approximation of G-invariant networks with inner tensor order smaller than $\frac{n}{2}$, it is still possible that for specific groups of interest we can prove approximation power with more efficient (i.e., lower order inner tensor) G-invariant networks. Of specific interest are G-invariant networks that use only first order tensors.

Theorem

Let $G \leq S_n$. If first order G-invariant networks are universal, then $\|a^n\|_H < \frac{n}{2} |G|/|H|$ for any strict super-group $H < S_n$.

$\|a^n\|_H$ is the number of equivalence classes of $[a]^n$ defined by the relation: $(i_1, i_2) \sim (j_1, j_2)$ if $j_1 - j_2 = g(i_1) - g(i_2)$, $\ell = 1, 2$ for some $g \in G$. Intuitively, this condition asks that super-groups of G have strictly better separability of the double index space $[a]^n$.

References