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Introduction
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ne basic paradigm of deep neural networks is repeatedly composing linear layers
terlaced with non-linear, element-wise activation functions to create effective pre-

i
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ctive models.

ng to learn a function (task) f that is known to be invariant to some group
ries G (i.e., G-invariant function) it is common to use linear layers that

respect this symmetry, namely, invariant and/or equivariant linear layers. Networks
with invariant/equivariant linear layers with respect to some group GG will be referrea
here as G-invariant networks, e.g., Figure 1.

Goal

When using these networks one important question arises: Can a G-invariant net-
work approximate an arbitrary continuous G-invariant function?

The goal of this paper Is to address this question for all finite permutation groups
G < S, where S, is the symmetric group acting on [n] = {1,2,...,n}.
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Examples

= Tasks involving point clouds or sets are in general S,,-invariant |5, 6].

Networks (CNNs) [3] t

IS tabular, requires dea
each set [1].

Tasks involving graphs

The archetypal examples of G-invariant networks are Convolutional Neural

hat are translation equivariant.

_earning tasks involving interaction between different sets, where the input data

ing with different permutations acting independently on

and hyper-graphs lead to symmetries defined by tensor

products of permutations |2, 4].

Contributions

1. We prove: any continuous function invariant to an arbitrary permutation

2.
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subgroup G < S5, can
using a G-invariant ne

We prove a lower bou
sO to achieve universa

We prove a necessary

ne approximated on a compact set to an arbitrary precision
'work, using high-order tensors.

nd on the order d of tensors used In a G-invariant network
Ity.
condition on groups G < S,, so that G-invariant networks,

using only first order tensors, are universal. First order tensors are interesting
since they lead to computationally tractable algorithms.

Permutation action
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In this paper we consider the case of symmetry defined by any subg

symmetric group, lL.e., G < S,. The action of G on z € R" used |
defined as

g-x = (:L’g—1<1), . ,xg—1(n)), g e qG.
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The action of G on tensors X € R™*® (the last index, denoted 9 represents feature

depth) is defined similarly by
(g ' X)il---ik,j — Xg_l(il)...g_l(ik),ja g < G

Dg _H

(2)

The Figure illustrates the action of g on tensors of order k£ = 1, 2, 3, where the per-
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Invariant networks architecture

mutation ¢ Is a transposition of two numbers and Is applied to each dimension of the

A G-invariant function is a function f : R" — R that satisfies

flg-x)= f(x)

forallz € R"and g € G.

A linear GG-equivariant layer is an affine map L : R xa _y R X satistying

L(g-X) =g+ L(X)
forall g € G, and X € R >a,

A linear G-invariant layer is an af

ne map h R xa _y RO satistying
h(g - X) = h(X)

forall g € G, and X € R *a

A G-invariant network is a function F': R"** — R defined by

F=moholLjoogo---o000 L,

where L, are linear G-equivariant layers, o Is an activation function, h i1s a G-invariant

layer, and m is a Multi-Layer Perceptron (MLP).
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Figure 1. G-invariant network model. By construction, G-invariant networks are G-invariant

functions.

Universality of invariant networks

et f: R"” — R be a continuous G-invariant function for some G < §5,,, and K C
R™ a compact set. There exists a G-invariant network that approximates f to an
arbitrary precision on K.

The proof of Theorem 1 Is constructive: given a G-invariant function f, it builds an
f-approximating G-invariant network with hidden tensors X € R"" of order d, where
d = d(G) is a natural number depending on the group G. It can be shown that

d < ”(”2_1) forall G < S,.

The main idea Is to approximate a finite generating set of the ring of G-invariant
bolynomials, which can be shown to be dense in the space of continuous G-invariant
functions on a compact domain.

A lower bound on equivariant layer order

We note that even using tensors X € R"" with order d = 2 could already be compu-
tationally challenging. We therefore ask whether we can use G-invariant networks
with lower order tensors without sacrificing approximation power.

We show this Is generally not the case; for some subgroups a minimal order of ”7_2 IS
needed. Specifically, we prove the following for G = A,,, the alternating group:

It an A,,-invariant network has the universal approximation property then it consists
of tensors of order at least ”T_Q

The basic idea behind this proof is that both S,, and A,, give rise to the same linear
equivariant layers for low order tensors. This implies that any A,,-invariant network
s also S, -invariant. We use this fact in order to show that an A,,-invariant network
that uses only low order tensors cannot approximate the Vandermonde polynomial
V(z) = Mi<icj<n(x; — x;) (Which is A, -invariant but not .S,,-invariant).

Universality of first order networks

Although In general we cannot expect universal approximation of G-invariant net-
works with inner tensor order smaller than ”7_2 it I1s still possible that for specific
ogroups of interest we can prove approximation power with more efficient (i.e., lower
order inner tensors) G-invariant networks. Of specific interest are G-invariant net-
works that use only first order tensors.

et G < S,. If first order G-invariant networks are universal, then |[n]?/H| <
'n]?/@G| for any strict super-group G < H < S,

[n]*/G| is the number of equivalence classes of [n]* defined by the relation: (i1, 2) ~
(71, 92) It 30 = glep), £ = 1,2 for some g € G. Intuitively, this condition asks that
super-groups of G have strictly better separation of the double index space [n]?.

References

1] Jason S. Hartford, Devon R. Graham, Kevin Leyton-Brown, and Siamak 4] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman.

Ravanbakhsh. | | Invariant and equivariant graph networks.
Deep models of interactions across sets. In International Conference on Learning Representations, 2019.

In ICML, 2018.
2 Risi Kondor Hyv T Son. K ban Brandon And 4 Shubhend 5] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
2] Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, an Jbhenau Pointnet: Deep learning on point sets for 3d classification and segmentation.

Trivedi. . ..
Covariant compositional networks for learning graphs. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 1(2):4, 2017.

arXiv preprint arXiv:1801.02144, 2018. [6] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R

[3] Alex Krizhevsky, llya Sutskever, and Geoffrey E Hinton. Salakhutdinov, and Alexander J Smola.

Imagenet classification with deep convolutional neural networks. Deep sets. | | |
In Advances in neural information processing systems, pages 1097-1105, 2012. In Advances in Neural Information Processing Systems, pages 3391-3401, 2017.



