

Thesis for the degree

Doctor of Philosophy

By

Haggai Maron

Advisor: professor

Yaron Lipman

August 2019

Submitted to the Scientific Council of the

Weizmann Institute of Science

Rehovot, Israel

 תורוצ לש הרומקו הקומע הזילנא

Deep and Convex Shape

Analysis

ראותל)הזת(רמג תדובע

היפוסוליפל רוטקוד

תאמ

 ןורמ יגח

 ט״עשת בא

לש תיעדמה הצעומל תשגומ

עדמל ןמציו ןוכמ

לארשי ,תובוחר

 רוספורפ :החנמ

ןמפיל ןורי

Doctoral Dissertation Haggai Maron August 2019

1 Acknowledgments

First, I would like to thank my advisor Professor Yaron Lipman for his guidance, constant encouragement,
and advice. I was fortunate to have him as an advisor. I would also like to thank the members of my Ph.D.
committee, Prof. Ronen Basri and Prof. Yosef Yomdin.
Most of the work presented in this dissertation was executed as part of collaborations with my wonderful
labmates. I want to thank them for their help, advice, and for creating a productive working environment.
Last but not least, I want to thank my family: my amazing wife Maayan, for her patience, encouragement
and help during deadlines, my beloved children, Nadav and Noa, which will always be my most important
contributions, My parents Ilana and Ami Maron who raised me to be a curious person I am, and to my
grandparents Pnina Merling-Reiss and Zeev Reiss who introduced me to the world of science at a very
young age.

Haggai Maron,
Rehovot, August 2019

1

Doctoral Dissertation Haggai Maron August 2019

2 Declaration

I hereby declare that this thesis summarizes my original research, performed under the guidance of my
advisor Prof. Yaron Lipman. Wherever the contributions of others are involved, every effort was made to
indicate this clearly by citing the relevant literature. In particular, [72, 14, 161] involved equal contributors,
where all authors contributed to the idea, theoretic analysis and implementation.

Haggai Maron

2

Contents

1 Acknowledgments 1

2 Declaration 2

3 Abstract 6

4 Introduction 7
4.1 Deep learning of irregular data . 8
4.2 Relaxations of matching problems . 10

I Deep Learning of Irregular Data 12

5 Learning sphere-type surfaces via toric covers 12
5.1 Introduction . 12
5.2 Previous work . 14
5.3 Method . 15

5.3.1 Overview . 15
5.3.2 Transferring functions between S and T . 16
5.3.3 Neural Networks on the flat-torus T . 17

5.4 Properties . 19
5.5 Evaluation . 20
5.6 Applications . 22

5.6.1 Semantic segmentation of surfaces . 22
5.6.2 Landmark detection on anatomical surfaces . 24
5.6.3 Timing . 26

5.7 Conclusion . 26
5.8 Proofs . 27

6 Convolutional neural networks on point clouds by extension operators 28
6.1 Introduction . 28
6.2 Previous Work . 29
6.3 Method . 30

6.3.1 Extension operator . 31
6.3.2 Kernel model . 32
6.3.3 Restriction operator . 32
6.3.4 Sparse extrinsic convolution . 33
6.3.5 Choice of RBF . 33
6.3.6 Up-sampling and pooling . 34

6.4 Properties . 34
6.4.1 Invariance and equivariance . 34
6.4.2 Robustness . 35
6.4.3 Revisiting image CNNs . 36

6.5 Experiments . 37
6.5.1 Point cloud classification . 37
6.5.2 Point cloud segmentation . 40
6.5.3 Normal estimation . 41

3

Doctoral Dissertation Haggai Maron August 2019

6.5.4 Training details, timings and network size . 43
6.6 Conclusions . 43
6.7 Proofs . 43

6.7.1 Multiplication law for Gaussians . 43
6.7.2 Theoretical properties of the extension operator . 44

7 Invariant graph networks 47
7.1 Introduction . 47
7.2 Previous work . 49
7.3 Linear invariant and equivariant layers . 49

7.3.1 Solving the fixed-point equations . 51
7.4 Experiments . 53
7.5 Generalizations to multi-node sets . 55
7.6 Efficient implementation of layers . 56
7.7 Invariant and equivariant subspace dimensions . 56
7.8 Implementing message passing with our model . 57

8 Universality of invariant networks 59
8.1 Introduction . 59
8.2 Preliminaries and main results . 60
8.3 G-invariant networks universality . 61

8.3.1 Proof of proposition 5 . 62
8.3.2 Bounded order construction . 65
8.3.3 Examples . 66

8.4 A lower bound on equivariant layer order . 66
8.5 Universality of first order networks . 68
8.6 Conclusion . 70
8.7 Proofs . 70

9 Provably powerful graph networks 72
9.1 Introduction . 72
9.2 Previous work . 73
9.3 Preliminaries . 73

9.3.1 k-order graph networks . 73
9.3.2 The Weisfeiler-Lehman graph isomorphism test . 74

9.4 Colors and multisets in networks . 75
9.5 k-order graph networks are as powerful as k-WL . 76
9.6 A simple network with 3-WL discrimination power . 77
9.7 Experiments . 78
9.8 Conclusions . 80
9.9 Proof of Proposition 11 . 81
9.10 Proof of equivairance of WL update step . 81
9.11 Proof of Theorem 11 . 81

9.11.1 Input and Initialization . 82
9.11.2 k-WL update step . 82
9.11.3 Histogram computation . 83

9.12 Proof of Theorem 12 . 83

4

Doctoral Dissertation Haggai Maron August 2019

II Relaxations of matching problems 86

10 An efficient SDP relaxation of the point cloud registration problem 86
10.1 Introduction . 86
10.2 Previous work . 87
10.3 Approach and Formulation . 88
10.4 Implementation details . 94
10.5 Evaluation . 95
10.6 Applications . 97

10.6.1 Functional maps . 97
10.6.2 Anatomical classification . 98
10.6.3 Shape collection alignment . 99

10.7 Conclusions . 102
10.8 Local minimization . 103
10.9 Collection alignment . 103

11 Graph matching via tight quadratic relaxation 106
11.1 Introduction . 106
11.2 Previous work . 107
11.3 Approach . 109

11.3.1 Convex relaxation . 110
11.3.2 Projection . 111

11.4 Comparison with other relaxations . 112
11.5 Implementation details . 114
11.6 Generalizations . 117
11.7 Evaluation . 118
11.8 Applications . 120
11.9 Conclusions . 125
11.10Proofs . 125
11.11Sparsity pattern for improving matching resolution . 128

12 Concave graph matching 129
12.1 Introduction . 129
12.2 Conditionally concave energies . 131
12.3 Probably conditionally concave energies . 133
12.4 Graph matching with one sided permutations . 136
12.5 Experiments . 136
12.6 Conclusion . 138
12.7 Frank-Wolfe with concave search . 138

13 Discussion 140

5

Doctoral Dissertation Haggai Maron August 2019

3 Abstract

This dissertation summarizes the main results obtained during my Ph.D. studies at the Weizmann Institute of
Science under the guidance of Professor Yaron Lipman. Two fundamental problems in shape analysis were
considered: (1) how to apply deep learning techniques to irregular data and (2) how to compute meaningful
maps between shapes. My work has resulted in several novel methods for applying deep learning to surfaces,
point clouds (i.e., finite subsets of the Euclidean space), graphs and hyper-graphs as well as new efficient
techniques to solve relaxations of well-known matching problems. The report discusses these two problems,
surveys the suggested solutions and points out several directions for future work, including a promising
direction that combines both problems.

6

Doctoral Dissertation Haggai Maron August 2019

4 Introduction

Shape analysis is concerned with studying and quantifying properties of geometric objects such as curves,
surfaces, and higher dimensional manifolds. Among other fields, shape analysis techniques are widely used
in computer vision [272], computer graphics [85], computational anatomy [34] and medical imaging [164].
During the last few years we tried to tackle two key questions: (1) deep learning of irregular data: i.e., How
can we apply deep learning to common shape representations such as point clouds, surfaces, and graphs?
(2) shape matching: Given two shapes, how can we compute meaningful maps between them.
Figure 1 illustrates these two problems. The top part illustrates the geometric deep learning problem: ap-
plying deep learning to irregular domains. The bottom part illustrates two instances of the shape matching
problem: matching 3D models (left, the map is represented using color coding) and matching an image
collection to a grid structure according to color features (right). The rest of the introduction puts these two
problems in the proper context.

Figure 1: The main problems considered in my Ph.D. thesis: applying deep learning to geometric objects such as
point clouds, surfaces, and graphs. Bottom: Two instances of shape matching problems.

Applying deep learning to irregular data is a relatively new problem. The overwhelming success of deep
learning in advancing the state of the art in various learning challenges and domains [140] inspires research
efforts attempting to achieve similar success for geometric objects such as point-clouds, graphs and dis-
cretized surfaces [39]. Adapting deep learning methods to the irregular setting is a particularly interesting
and challenging problem since each of these data types admits different representations, and consequently,
different symmetries: for example, surfaces and point clouds are invariant to rigid Euclidean transforma-
tions, while graphs are invariant to node relabeling. Trying to directly apply commonly used neural net-
works (e.g., convolutional neural networks or fully connected networks) to irregular data is not well-defined
in some cases, or performs poorly in other cases. During the last years, we developed network architectures
and layers for all of the data types mentioned above, as well as analyzed widely-used models.
In contrast to the first problem, shape matching problems have been studied for decades [234]. These
problems are among the most fundamental problems in geometric data analysis, where the task is finding a
(semantically) meaningful map between a pair of shapes. A popular way of handling these hard problems is

7

Doctoral Dissertation Haggai Maron August 2019

by first posing them as quadratic integer optimization problems, relaxing them to a continuous domain and
solving the relaxed problem, which is often more tractable. In most cases, there is an inherent tradeoff
between the tightness of the relaxation (i.e., how well its solution approximates the original problem’s
solution), and the computational resources needed to optimize it. During the last few years, we devised
several efficient methods for solving widely known relaxations of prevalent matching problems.

4.1 Deep learning of irregular data

The problem setting is as follows: the input consists of n objects Oi, possibly with corresponding descriptor
functions fi : Oi ! Rd, and targets ti that describe some semantic property of the object (e.g., does a
surface represent a dog or a cat). Our task is to find a function F that approximates this functional relation,
i.e., F(Oi, fi) ⇡ ti and generalizes well to unseen data.

Discretized surfaces and point clouds. We first studied deep learning of discretized surfaces [157] and
point clouds [14]. In both cases, our methods are based on the observation that finding a well-behaved
mapping from the given object (surface or point cloud) to a domain with a well-defined convolution, allows
us to pullback this convolution to the object. The pullback operation is done by first mapping a function
from the object to this domain, applying the convolution and mapping the result back to the object. In
[157] we devised a way to map sphere-type surfaces (i.e., surfaces that are topologically equivalent to a
sphere) to a periodic planar domain (a torus), for which we have the well-known 2D convolution. Using
this mapping mechanism, we convert input surface descriptors to images, thus reducing the problem of
learning surfaces to the problem of learning images. This reduction has the advantage of being able to
utilize powerful deep learning machinery and successful architectures developed for images, as opposed to
methods that are specifically tailored for surfaces (e.g., [162]). In a follow-up work [23], we used a similar
surface-image representation for the task of generating novel shapes using generative adversarial networks.
In particular, we have successfully applied our method to the task of human model generation (for another
approach for generating realistic 3D surfaces, see [15]). In another recent follow-up work [101], we devise a
broad family of mappings from sphere-type surfaces to the torus, which represents surfaces more faithfully
due to reduced area distortion. This method achieves state of the art results on 3D shape analysis tasks such
as model segmentation and retrieval.
The mapping methods mentioned above rely heavily on the surface’s connectivity information and cannot
be adapted to the point cloud scenario [14]. In this case, which is of particular interest for applications, we
opt for mapping point cloud functions to functions defined on R3. This is done by defining an extension
operator that generates a volumetric function from a point cloud function via a Radial Basis Function (RBF)
approximation. Similarly, the kernel is defined to be a sum of weighted RBFs, where the weights are the
learnable parameters. The convolution of a point cloud function can now be defined using the pullback
mechanism mentioned above: first mapping the point cloud function to a volumetric function, applying
the standard convolution in R3 and sampling the result on the point cloud in order to get new point cloud
function. This process is illustrated in Figure 2.

Graphs and hyper-graphs In a related line of work, we study a popular model for constructing networks
that are invariant to natural transformations of the input object [264, 203, 105, 158]. Given a group G acting
on an input object, this model is composed of a concatenation of equivariant/invariant linear layers with
nonlinearities. A fundamental problem when constructing such models is finding the maximal set of linear
invariant or equivariant operators with respect to the relevant group. In [158], we addressed this problem for
the natural symmetry groups of graphs and hyper-graphs. In this case, the input is an affinity tensor A 2 Rn

k

8

Doctoral Dissertation Haggai Maron August 2019

Figure 2: The point cloud convolution suggested in [15]: First, a function over the point cloud (in this case the
constant one) is extended to a continuous volumetric function over the ambient space; second, a continuous volumetric
convolution is applied to this function (without any discretization or approximation); and lastly, the result is restricted
back to the point cloud.

that describes relations between ordered subsets of k elements in a set (e.g., in the case k = 2, A is a graph
affinity matrix). Note that these tensors adhere to a specific reordering symmetry: reordering the nodes of
the hyper-graph results in a different affinity tensor that represents the same hyper-graph. Figure 3 illustrates
this symmetry. In this paper, we provided a full characterization of affine functions that are equivariant to
this reordering operation. One surprising fact is that the dimension of the space of equivariant functions
does not depend on n, the number of nodes. This fact allowed us to construct deep invariant networks that
can process graphs of any size. Theoretically, we show that this construction gives rise to a deep invariant
model that can approximate any message passing neural network [90], the current state of the art in graph
neural networks.
In [159], we study the approximation power of the invariant models mentioned above. We consider the rather
general case of permutation groups acting on Rn by permuting the coordinates of vectors and show three
main results. The first result, states that this model can approximate any continuous invariant function to
arbitrary precision. The proof is constructive and makes use of high order tensors, that is, tensors of the form
A 2 Rn

k for k > 1, which might be computationally prohibitive. Our second result shows that this problem
cannot be alleviated since there exist an infinite family of permutation groups for which using high order
tensors is necessary for obtaining the universal approximation property. Our last result considers the most
important case for applications, i.e., networks that use only first order tensors (e.g., k = 1), and provides a
necessary condition for a permutation group to have the universal approximation property in this case. In

Figure 3: An illustration of symmetries of graph representations. When representing a graph using an adjacency
matrix, each order of the nodes gives rise to a new, possibly different adjacency matrix of the same graph. In [158,
161] we suggest neural networks that are invariant to such symmetries.

9

Doctoral Dissertation Haggai Maron August 2019

our latest paper [161] we give more evidence to the fact that higher-order networks are more expressive,
and suggest to deviate from the linear equivariant model that was suggested above for achieving better
complexity vs. expressivity tradeoff. More precisely, we show that a k-order networks can approximate
the k-Weisfeiler Lehman (k-WL) graph isomorphism test [255], which gives rise to graph models that
are more powerful than message passing neural networks. We also suggest a new simple architecture,
composed of blocks that apply Multi-Layer Perceptrons (MLP) to the edge and node features and then
matrix multiplication. This model is shown to have 3-WL expressivity, strictly more powerful than message
passing networks. See Figure 4 for an illustration of the suggested block.

Figure 4: The permutation equivariant block suggested in [161]. Three different Multi-Layer Perceptrons are applied
to the feature dimension of the input tensor. Matrix multiplication is applied to the output of two of them while the
third output is concatenated.

4.2 Relaxations of matching problems

Three of our works devise scalable approaches for solving well-known tight relaxations of popular matching
problems. In all cases, we started from a classic semidefinite relaxation [107] in which the quadratic terms
are linearized at the cost of adding a new large optimization variable. In general, this is a tight relaxation
that can be solved efficiently for only small-sized problems.
In [160] the problem of jointly aligning and matching two point clouds is considered. More precisely, Given
two d-dimensional point clouds, P,Q 2 Rd⇥n, which are neither aligned nor consistently labeled, the task
is to find an orthogonal transformation R 2 O(d) and a permutation X 2 ⇧n minimizing the distance
between the point clouds:

d(P,Q) = min
X,R

kRP �QXk
2
F (1a)

s.t. X 2 ⇧n (1b)
R 2 O(d) (1c)

This is a central problem in shape analysis with many applications in computer vision and computer graph-
ics. Applying the standard semidefinite relaxation results in a relaxation that can be solved for up to 15
points. Our key insight is that the large semidefinite constraint can be shown to be equivalent to several
smaller semidefinite constraints. This observation allowed us to solve problems with significantly larger
number of points.
Our motivation in [72] was to find an efficient way of optimizing a tight relaxation to the graph matching
problem (GM). Given two graphs represented by affinity matrices A,B 2 Rn⇥n the GM problem is the
problem of finding a permutation matrix X that minimizes a quadratic objective that measures the discrep-
ancy between edge affinities of the graph, e.g.,

E(X) := �tr(AXBXT) (2)

10

Doctoral Dissertation Haggai Maron August 2019

As in [160], applying the standard semidefinite relaxation is impractical for real-sized problems. The key
contribution of this paper is showing that this semidefinite relaxation is equivalent to a convex quadratic
program, which can be solved more efficiently. Using this observation, we optimize this relaxation for
graphs of much larger size. Figure 1 (bottom) shows results that were obtained by this method. In [138], we
show how to approximately minimize another relaxation that originates from the lifting method described
above, by using a Sinkhorn-type method [58].

Trajectory
Humerus Bone
Tibia Bone

Figure 5: Anatomical dataset embedding in the plane obtained using the method suggested in [156]. Squares and
triangles represent different bone types; lines represent temporal trajectories.

In [156], we analyze the common doubly-stochastic relaxation for the GM problem. In this case, the domain
of the relaxation is the convex hull of all permutation matrices, and the objective is again E(X). Our first
result shows that many instances of this relaxation, e.g., when matching graphs represented by Euclidean
distance affinities, are concave relaxations. This is a significant result since concave relaxations have two
important advantages: (i) every local minimum is a permutation matrix and (ii) the set of global minima
of the original problem and the relaxation is the same. Differently put, the relaxation process does not
yield new solutions as well as alleviates the need to project the solution of the relaxed problem onto the
permutation matrices (a step which is often not optimal). Our second result shows that many other popular
use cases, e.g., when matching graphs represented by geodesic distance affinity matrices, are concave with
high probability, meaning it is rare to find a direction on which the restriction of the objective is convex. we
also show that in these cases the relaxation enjoys the advantages mentioned above with high probability.
Figure 5 illustrates an application of this concave relaxation to anatomical shape space analysis: We match
a dataset of 67 mice bone surfaces acquired using micro-CT. The dataset consists of eight time series. Each
time series captures the development of one type of bone over time. We used Multi-Dimensional Scaling
(MDS) [57] to assign 2D coordinates to each surface using a dissimilarity matrix we obtained from matching
all pairs of bones.

11

Doctoral Dissertation Haggai Maron August 2019

Part I

Deep Learning of Irregular Data

5 Learning sphere-type surfaces via toric covers

This section is based on [157].

5.1 Introduction

A recent research effort in the geometry processing and vision communities is to translate the incredible
success of deep convolutional neural networks (CNN) to geometric settings. One particularly interesting
scenario is applying CNNs for supervised learning of functions or labels over curved two dimensional
sphere-like surfaces. This is a common problem in analyzing human bodies, anatomical, and medical data.

a

a

b

b
a

a

b

b
a

a

b

b
a

a

b

b

a

a

b

b

a

a b

b
a

a

b

b

a

ab

b

Figure 6: Defining convolutional neural networks on sphere-like surfaces: we construct a torus (top-right) from four
exact copies of the surface (top-left) and map it to the flat-torus (bottom-right) to define a local, translation invariant
convolution (bottom-left). This construction is unique up to a choice of three points on the surface (colored disks).

Applying CNNs to extrinsic surface representation such as volumetric grids [194] or depth map projections
on extrinsic 2D cameras [245] requires working with 3D grids, or dealing with many camera and lighting
parameters, and is very sensitive to deformations (e.g., human pose changes). While it might be possible
to learn a representation that is invariant to these deformations, this requires substantial amount of training
data. In contrast, the goal of this section is to provide an intrinsic representation that would enable applying
CNNs directly to the surfaces.
One of the main challenges in applying CNN to curved surfaces is that there is no clear generalization of the
convolution operator. In particular, two properties of the convolution operator that are considered pivotal in
the success of the CNN architectures are locality and translation invariance. It is possible to parameterize a
surface locally on a geodesic patch around a point [162], however, this representation lacks global context.
Sinha et al. [223] proposed geometry images to globally parameterize sphere-like surface into an image,

12

Doctoral Dissertation Haggai Maron August 2019

however, although continuous, their representation is not seamless (the parameterization is dependent on the
cuts made for its computation), their space of parameterizations, namely area-preserving maps has a very
high number of degrees of freedom (i.e., it requires an infinite number of point constraints to uniquely define
a mapping) and therefore can represent the same shape in many different arbitrary ways in the image (see
Figure 7 for an example). Lastly, the convolution on the geometry image is not translation invariant.
Defining a local translation invariant convolution operator on surfaces is not trivial. The first hurdle is
topological: the only surface type for which a translation invariant convolution is well defined is the torus
(this will be explained in Section 5.4). However, clearly it is not possible to map sphere-like surfaces to
a torus without introducing discontinuities, that is, mapping some neighboring points on the surface to
distant ones on the torus. Information will propagate differently through discontinuities and locality of the
convolution would be lost. The second difficulty is geometric: We want mappings to be consistent enough
across different surfaces, so that mapped test surfaces look similar to training surfaces. This is related to
the space of mappings, or in other words, the number of degrees of freedom that are needed to prescribe
a unique map, up to translation of the torus. The more parameters one needs the harder it is to learn from
these mappings (e.g., in the worst case, target position of every source point could be a degree of freedom).
We tackle these challenges with a topological construction: instead of dealing with the original sphere-like
surface we construct a cover of the surface that is made out of four exact copies of the surface and has
the topology of the torus, see Figure 6 - top row. Furthermore, we show that this torus can be mapped
conformally (preserving orthogonal directions) to the flat torus using a very efficient algorithm. This defines
a local translation invariant convolution on the 4-cover, see example of a single convolution stencil in Figure
6 - bottom row. This construction is unique up to a choice of three points on the surface; the convolution
depicted in Figure 6 is created by the three points (shown as colored disks) in the bottom-left inset.
This construction provides a six dimensional space of seamless convolutions on a sphere-like surface: Every
choice of a triplet of points corresponds to a unique conformal map which in turn defines a convolution
operator, or equivalently, a conformal flat-torus structure on the 4-cover of the surface. Since isometries
are in particular conformal maps this construction is also invariant to isometric deformations of the shapes.
The relatively low dimension of the convolution space allows efficient sampling of this space in the context
of data augmentation. The conformality preserves the directionality of the translation directions on the
flat-torus but introduces scale changes; in that sense the triplet acts as a magnifying glass - zooming into
different parts of the surface.
We employ the above constructions for supervised learning over surfaces. Our goal is to learn a non-linear
relation between “easy” vector valued functions over surfaces (e.g., coordinate functions, normals, curva-
ture or other commonly used geometric features) and target “hard” vector valued functions (e.g., semantic
segmentation or landmark labeling). The conformal map from the 4-cover to the flat-torus will be used
to seamlessly transfer these functions to the flat-torus which will be used as our domain for training. To
leverage existing image-based CNN architecture and optimization algorithms on the flat-torus domain, we
provide three novel technical components: (i) A cyclic-padding layer replaces zero padding to achieve
fully-translational invariance over the flat-torus; (ii) a projection layer on the function space of the surface
to properly map functions between the original surface and its 4-cover, and (iii) an aggregation procedure to
infer prediction from multiple triplets.
Experiments show that our method is able to learn and generalize semantic functions better than state of
the art geometric learning approaches in segmentation tasks. Furthermore, it can use only basic local data
(Euclidean coordinates, curvature, normals) to achieve high success rate, demonstrating ability to learn
high-level features from a low-level signal. This is the key advantage of defining a local translation invariant
convolution operator. Finally, it is easy to implement and is fully compatible with current standard CNN
implementations for images.

13

Doctoral Dissertation Haggai Maron August 2019

Figure 7: Parameterization produced by the geometry image method of [223]; the parameterization is not seamless as
the isolines break at the dashed image boundary (right); although the parameterization preserves area it produces large
variability in shape.

5.2 Previous work

Recent advances in convolutional neural networks (CNNs) motivated many researchers to apply these meth-
ods to geometric data. Extrinsic representations, such as 3D volumetric grid [194, 252], 2D projections [229,
245, 120], or point coordinates [196], have many shortcomings when analyzing non-rigid 2D manifolds:
they are sensitive to articulations, they do not leverage the intrinsic structure of the geometry, and only allow
very coarse representations. While these limitations can be addressed by analyzing the manifolds directly,
applying CNNs to surfaces is challenging because they do not come with a planar parameterization, and thus
are not directly suitable for deep learning. One possible way to address this limitation is to represent a sur-
face as a graph of triangles and use spectral convolutions [43, 109, 63]. However, this representation does not
take advantage of the fact that we are analyzing 2-manifold that can be parameterized in 2D domain.Another
disadvantage of spectral methods (which is targeted by [261]) is their difficulty with cross-shape learning
which stems from the fact that the spectral decomposition of each shape can be inconsistent. We next discuss
existing techniques which preform deep learning on 2-manifolds and parameterization methods they use.
For segmentation task, Guo et al. [99] proposed to lay out per-triangle features to a single 2D grid, and used
CNN to classify each triangle. This approach cannot use contextual information on relationships between
different triangles on the same surface unless this relationships are encoded in the input features.
The first paper adapting neural networks to surfaces, Masci et al. [162], use local geodesic polar coordinates
to parameterize a surface patch around a point; and map features to this patch. This parameterization re-
quires modifying the traditional convolution filter to account for angular coordinate ambiguity, essentially
ignoring patch orientation. In a follow up work, [32] use anisotropic heat kernels in order to generate a local
description of the input function and incorporate orientation.
For classification tasks, Sinha et al. [223] parameterize the entire surface using geometry images [193]
combined with spherical area-preserving parameterizations. As mentioned briefly above, geometry images
are not seamless and introduce a direction jump at the cut, see Figure 7. Additionally, the convolution
over the geometry image is not translation invariant since it represents a sphere-like topology. Finally,
since geometry images are computed using area-preserving mappings, which have an infinite number of
degrees of freedom, they can produce a wide variability of different planar realizations which will make
the learning process more challenging. See, for example, how one of the hands (green) and one of the
legs (blue) are strongly sheared in Figure 7 (one copy of the surface is marked with dashed square; all four
corners correspond to one of the legs). Lastly, their parameterization algorithm is not guaranteed to produce

14

Doctoral Dissertation Haggai Maron August 2019

a bijective embedding and can cause different parts of the surface to overlap in the geometry image, e.g.,
only one of the hands is visible in the geometry image in Figure 7.
In contrast to the methods described above, we propose a seamless parameterization technique that maps the
surface to a flat torus, thus providing a well-defined convolution everywhere. Our map is uniquely defined
by selection of 3 points on the surface, providing a relatively small space of possible parameterizations
which makes learning easier. Our map computation routine is very effective, as we only need to solve a
sparse system of linear equations per triplet of points.

5.3 Method

Convolutional neural networks (CNN) is a specific family of neural networks that leverages the spatial
relationships of local regions using mostly convolutional layers. Deep CNN’s with multiple consecutive
convolutions followed by nonlinear functions have shown to be immensely successful in image understand-
ing [136]. Our goal is to adapt CNN architectures to geometric surfaces.

5.3.1 Overview

Problem definition. Our training data consists of a set of triplets {(Si, xi, yi)}i2I of sphere-like surface
meshes Si ⇢ R3, “easy” d-vector valued functions over the surface Si, denoted xi 2 F(Si,Rd), and
ground-truth “hard” functions yi 2 F(Si,L), where L = {1, . . . , L} is a label set. By “easy” functions we
mean functions that can be computed efficiently over the surfaces, such as coordinate functions, curvature,
normals or shape features; by “hard” we mean functions for which no simple algorithm exists, such as a
semantic label (e.g., object part) that has to be prescribed manually.
Our goal is to find a non-linear mapping relating the “easy” and “hard” functions on surfaces. Mathemati-
cally we are looking for a function F ,

F : F(Si,Rd) ! F(Si,RL) (3)

that takes as input a d-vector valued (“easy”) function over a surface Si and produces a confidence L-vector
valued (“hard”) function over the same surface. That is, it produces a vector of confidences F (xi)[p] 2 RL

+

per point p 2 Si that correctly predicts its ground-truth label yi[p] 2 L (i.e., the maximal value in F (xi)[p]
is achieved at its yi[p]-th coordinate).

CNN on the flat-torus T . While CNN is a powerful tool for mapping “easy” to “hard” functions, existing
architectures cannot run directly over S . Therefore we propose to transfer functions to a flat torus1, denoted
T , and train CNN over that domain. The flat torus space is favorable since we can use a traditional CNN
with 2D convolutions directly to solve the problem over T , by discretizing the flat torus space as an m⇥ n
grid (we used m = n = 512).
Mapping S to T is not trivial because these two domains have different topologies. We address this issue by
considering a new topological construction S

4 (Section 5.3.2). The domain S
4 consists of four copies of the

surface cut in the same way to a disk topology and stitched together to one (boundaryless) torus-like surface.
We map S

4 conformally to the plane, where these 4 surface copies seamlessly tile the flat-torus. Note that
this mapping is not unique, and is defined by a triplet of points on S . Each triplet provides a different image
over T where resolution (surface area scaling) is non-uniform, and varies over S .

1The flat-torus is the planar square [0, 1]2 with its opposite sides identified.

15

Doctoral Dissertation Haggai Maron August 2019

Figure 8: Computing the flat-torus structure (middle) on a 4-cover of a sphere-type surface (left) defined by prescribing
three points (colored disks). The right inset shows the flat-torus resulted from a different triplet choice.

We address the mapping ambiguity by modifying network architecture, training data, and the way we in-
terpret the network output (Section 5.3.3). First, we add a new cyclic-padding layer enabling translation-
invariant convolutions (i.e., invariance to torus symmetry). Second, we incorporate a projection operator
layer that ensures that our network’s output is invariant to symmetries of S4 (i.e., multiple copies of the
input surface). Both of these layers are differentiable and support end-to-end training. Third, we sample
multiple triplets to produce multiple training images over T , substantially augmenting our training data.
And finally, as we analyze a surface at test time, we aggregate several predictions over the surface (produced
with different triplets).

5.3.2 Transferring functions between S and T

A key component of our approach is transferring functions between the surface S and flat torus T . That is,
given a function xi over the surface Si we want to transfer it to the flat-torus in a seamless way that preserves
locality and topological (i.e., neighboring) relations. We also want this transfer to be as-unique-as-possible
and invariant to isometric deformations of Si to avoid the need for unnecessary data augmentation. We next
show that there is a unique transfer operator for a given triplet of points P = {p1, p2, p3} ⇢ Si.
Since S and T have different topologies, to create a desired seamless map between these two domains we
define an intermediate surface, S4, a torus-type 4-cover of S (branched cover, similarly to [118]). To create
S
4 we first make four copies of the surface and cut each one along the path

p1
a
! p2

b
! p3

to obtain disk-like surfaces (Figure 8, left). Next, we stitch the four surfaces according to the instructions
shown in Figure 6, top-right, to get a torus-like surface, S4. Note that this construction is indifferent to
the actual cuts used (e.g., a, b in Figure 8) and different cuts would produce the same surface S

4. Lastly,
we compute a map �P : S4

! T taking S4 conformally to T (see Figure 8, middle). In practice, we
compute this map by first mapping a single disk-like copy of S in S

4 (e.g., Figure 8, left) to the plane using
the method in [7] (we used the {⇡/2,⇡,⇡/2} orbifold) followed by duplicating the resulting planar mesh
until we cover the representative square tile of the flat torus, namely [0, 1]2. For weights we used cotan
weights with negative values clamped to 10�2 to ensure positivity and hence bijective mapping. Per triplet
P , this approximately-conformal map can be computed very efficiently by solving a sparse system of linear
equations, where the resulting map defines a 2D position for each vertex of the disk-like S .

16

Doctoral Dissertation Haggai Maron August 2019

(a) (c)(b)
Figure 9: Visualization of “easy” functions on the surface (top-row) and their pushed version on the flat-torus (bottom-
row). We show three examples of functions we use as input to the network: (a) average geodesic distance (left), (b) the
x component of the surface normal (middle), and (c) Wave Kernel Signature [16]. The blowup shows the face area,
illustrating that the input functions capture relevant information in the shape.

We use �P to transfer functions between the surface S and the flat-torus T . Given a function x 2 F(S,Rd)
we define its push-forward to the flat-torus, pushP(x) 2 Rm⇥n⇥d, by

pushP(x) = x � � ��1
P , (4)

where : S4
! S is the projection map taking each point in S

4 to its corresponding point in S . That is,
given a cell (i.e., pixel) on the discretized torus, we map its centroid to S

4 via the map ��1
P , and then to

S via the map . We evaluate x at that point and assign the corresponding d-dimensional vector value to
the cell. In practice, we use Matlab’s “patch” command to generate each channel of pushP(x). Figure 9
visualizes ”easy” functions x and their push-forward to T .
An interesting alternative to the above construction of S4 and the mapping to the flat torus S4

7! T would
be to use a single copy of the surface, S , and a mapping to a sphere-type flat representation (Euclidean
orbifold) S 7! O. This corresponds to taking one quarter of the flat torus (e.g., upper left quarter of the
squares in Figure 9). Although this representation is more compact it will not be topologically correct as the
convolution kernels will be applied in different orientations to points on different sides of the cut.

5.3.3 Neural Networks on the flat-torus T

Now that we are able to map functions between S and T we explain how we train CNN over the flat torus.
A CNN over the flat-torus is defined as a non-linear function taking d-vector valued functions over the torus
to L-vector valued function over the torus. Therefore we denote:

f(·, w) : Rm⇥n⇥d
! Rm⇥n⇥L, (5)

where w denotes the network parameters.

17

Doctoral Dissertation Haggai Maron August 2019

We first describe the appropriate architecture for f on T that takes into account translational symmetries of
T and the fact it is covered by four copies of the surface (i.e., S4). To train f , we use multiple triplets Pk to
push training examples on the surface (Si, xi, yi) to the flat-torus, augmenting our training data by mapping
the same surface in different ways. We use these training examples to optimize for w, parameters of the
CNN. Lastly, we explain how our trained network can be used to analyze an input test shape.

Network architecture for CNN on T . The input and output of the network f(·, w) is represented in the
form of discrete two dimensional images, and there are many state-of-the-art network architectures that have
proven highly successful for this type of data. In this work, we used the FCN32 CNN architecture of [151]
with two main differences: First, since we need f to be fully-translation invariant and well-defined on the
flat-torus we employ a cyclic padding instead of the standard zero padding used for images. This is crucial
for seamless learning (as demonstrated by experiments in Section 5.5). Second, since there are 4 copies
of S in S

4, several predictions over the flat-torus might correspond to the same point on S . Thus, for the
final output of the network f(·, w) 2 Rm⇥n⇥L to be well-defined on S (so that we can use push�1) we
incorporate a projection operator that considers values in the m ⇥ n grid that correspond to the same point
in S and replaces them with their max. Similar to standard pooling layers, averaging corresponding values
resulted in inferior results. We implemented two differentiable layers that correspond to these modifications,
enabling end-to-end learning for f(·, w).Figure 10 shows the new layers and their incorporation in the
network’s architecture.

Figure 10: Top: Segmentation network architecture where CB denotes a convolutional block, and PB denotes a
projection block. Bottom: Breakdown of the convolutional and projection blocks. Our network has two new layer
types: the cyclic padding layer in each convolutional block, and the final projection layer.

We note that the max-projection layer mentioned above has certain resemblance to the TI-pooling operator
introduced in [139] which pools over corresponding pixels of multiple transformed versions of the input
image and aim at learning transformation invariant features. In contrast, our layer pools over corresponding
points on the surface in order to get a single prediction at every point on the surface.

Data generation. To train the network, we first need to push the training data to images defined over the
flat-torus T . Given training data {(Si, xi, yi)}i2I , for each i we sample ⇢ triplets P = (p1, p2, p3) ⇢ Si

from Si ⇥ Si ⇥ Si. Then for each P we create a pair

(Xk, Yk) = (pushP(xi), pushP(yi)), (6)

18

Doctoral Dissertation Haggai Maron August 2019

where each pair corresponds to training input Xk 2 Rm⇥n⇥d and output Yk 2 Rm⇥n⇥L directly compatible
with f(·, w), and k is an index for |I| ⇥ ⇢ such pairs. The choice of triplets follow the rationale of well-
covering the surface to allow each point to be represented with a reasonable (=not too low) scale factor
at-least in one map. Hence, we sampled a small number (5-20) of uniformly spread points (including the
AGD local maxima [126]) on the surface and randomly sampled triplets from this set.

Training CNN on T . We use this data to train CNN by finding locally optimal parameters w with respect
to the following loss function:

E(w) =
X

k

�
⇣
f(Xk, w), Yk

⌘
, (7)

where � is the standard softmax loss per pixel, weighted by 1/(� + c); c is the size of the pixel’s ground-
truth class, and � = 4000 is a regularizer. We used Matconvnet [235] for training using its SGD (Stochastic
gradient descent) with learning rate of 0.0001 as in the original implementation of [151]. We initialized the
network with the parameters of FCN32, removing and/or duplicating channels to fit our data dimension.

Aggregating CNN output on S . Given a new surface S and corresponding vector valued function x, we
use the trained CNN to define the final predictor F via:

F (x) =
X

P
S(P)� push�1

P

⇣
f(pushP(x), w)

⌘
, (8)

where P is a triplet from a set of ⇢ random triplets, S(P) is a weight function chosen to compensate for
the scale changes induced by the mapping �P , and � is pointwise multiplication of functions. The weight
function S(P) is taken to be the scale factor of the mapping �P . It is defined at every vertex of the surface
using a triangle-area weighted average of the adjacent triangles’ scale. Our aggregation method is motivated
by the observation that the scale factor can serve as a confidence measure for the CNN prediction at each
point of the surface.
Figure 11 depicts an aggregation example where the four left models show the contribution of four different
triplets P visualized using orange disks (gray color corresponds to points with low scale factor), and the
model on the right is the final result.

(a) (b)
Figure 11: Aggregating predictions from different triplets (four models on the left; triplets shown as orange disks) to
produce final prediction (right). Each triplet serves as a magnifying glass for some local or global part of the surface.
Note that on the third shape the third point is on the back side of the model.

5.4 Properties

In this section we justify the choice of the flat torus as the target domain and explain the translation invariance
of the new convolution operators. Specifically, we show that the convolution operator on S

4 is invariant to a
two dimensional group of conformal translations.

19

Doctoral Dissertation Haggai Maron August 2019

Convolution on the flat torus. We start by considering the Euclidean case, namely the flat torus T . A
translation is an isometry ⌧v : T ! T defined by ⌧v(x) = x�v. Translations act on functions over the torus
⌧v : F(T ,R) ! F(T ,R) via ⌧v(f)(x) = f(⌧v(x)) = f(x� v). Translation invariance of the convolution
operator means it commutes with the translation operator as was just defined:

⌧v(f ⇤ g) = ⌧v(f) ⇤ g

Conversely, under certain conditions, one can show that a linear and translation invariant operator is a
convolution with some fixed function g [61]. Therefore, linearity and translation invariance are defining
properties of convolution.

Translations on surfaces. To define a convolution operator on a surface S , a natural requirement is that it
would be linear and translation invariant. But what is a translation ⌧ : S ! S? In tune with the definition
of a surface, a translation on a surface should locally be a Euclidean translation. That is, a flow along a non-
vanishing vector field. According to the Poincaré-Hopf Theorem [168] the only surfaces with non-vanishing
vector fields are of Euler characteristic zero - in case of closed orientable surfaces, the torus. This implies
that the only surfaces on which we can define translations in the above mentioned way are toric.

The pullback convolution. Given two toric (not necessarily flat) surfaces T1, T2 and a homeomorphism
� : T1 ! T2 one can define a convolution operator ⇤1 on T1 from a convolution operator ⇤2 defined on T2

via
f ⇤1 g =

��
f � ��1

�
⇤2
�
g � ��1

��
� �,

The pullback convolution ⇤1 is linear and translation invariant w.r.t. the pullback translations ��1
� ⌧ � �,

where ⌧ represents translations in T2 for which ⇤2 is invariant to. This is proved in the Section 5.8.

In our case T1 = S
4, T2 = T the flat-torus with the Euclidean convolution and translations (modulo 1), and

the mapping � : S4
! T is a conformal homeomorphism. As the convolution on the flat-torus is invariant

to Euclidean translations ⌧ of the type x 7! x � v(mod 1), the pullback convolution on S
4 is invariant to

the pullback translations ��1
� ⌧ � �. Since �,��1, ⌧ are all conformal maps, these pullback translations

are conformal maps as well. To visualize an example of these translations consider Figure 6 (bottom left)
and imagine that each square on the David surface moves to a well-defined ”right” neighbor.

5.5 Evaluation

In this section, we compare our method to alternative approaches for surface parameterization and network
architecture. We compare to three other methods: The first two methods focus on the parameterization
component of our algorithm, the last one on the architecture:

1. GIM - where we used the geometry images parameterization method of [223] followed by application
of the FCN32 network [151]. To the best of our knowledge this is the only parameterization method
used with CNNs.

2. Tutte - we consider parameterization using Tutte’s embedding [232] to the unit square followed by
application of the FCN32 network [151]. To generate the embedding, we use the same cut as in our
method and map the boundary in a length-preserving manner (up to global scale) to the boundary of
the unit square. This is a natural selection for comparison, since Tutte’s embedding can be computed
as-efficiently as our method by solving a sparse system of linear equations.

20

Doctoral Dissertation Haggai Maron August 2019

3. Seamless+FCN - where we use our parameterization technique but without the two additional layers
of cyclic padding and projection. This is equivalent to considering the flat-torus as a disk with its
opposite sides disconnected.

Tutte GIM Seamless Ours

Figure 12: Head segmentation on two test surfaces by the four algorithms in Table 1. Our algorithm produces accurate
segmentation, while competing methods provide suboptimal results.

We perform the evaluation on the task of segmenting the head in human models. Our training set for this
task is composed of 370 models from the SCAPE [10], FAUST [30] and MIT animation datasets [240]. The
ground truth labels are head indicator functions that are manually labeled. Our test data are the 18 sphere-
like human models from the SHREC dataset [91]. We use intersection-over-union as our evaluation metric:
Denoting by GT the set of faces labeled ”head” and by ALG the faces labeled ”head” by the algorithm, this
metric as defined as

|GT \ALG|

|GT [ALG|

weighted by triangle areas. In all experiments, as input features (“easy” functions over the surfaces), we
use a set of 26 basic shape features: 21 WKS features (equally spaced), 4 curvature features (max, min,
arithmetic mean and geometric mean of the principal curvatures) and average geodesic distance (AGD) as
input. We initialize training with the parameters obtained by the FCN32 net [151]. We trained all networks
with the same parameters and same number of epochs.
For all methods we considered ⇢ = 10 different parameterizations per mesh, resulting in a dataset with
3700 segmented images of size 512⇥ 512. For all methods excluding GIM, the different parameterizations
correspond to ⇢ = 10 choices of triplets. For GIM the different parameterizations correspond to 10 uniform
rotations around the polar axis of the sphere as suggested in [223].All networks converged after 20 epochs.
For GIM we tried applying aggregation like in Eq. (8) with two choices of parameterization weighting:
scale dependent (like in our method), and uniform (all predictions get the same weight). The rationale in the

21

Doctoral Dissertation Haggai Maron August 2019

second version is that GIM uses area preserving parameterizations so theoretically no scaling is introduced.
Both aggregation methods produced the same results.

intersection-over-union
1. Geometry images + FCN 0.625
2. Tutte + FCN 0.567
3. Seamless + FCN 0.503
4. Ours 0.710

Table 1: Evaluation of CNN on surfaces with different parameterization methods and network architectures.
Table 1 summarizes the results. Our method achieves superior results with respect to all alternatives. The
results indicate that the layers added to the network to account for the flat-torus topology indeed play an
important role.
Figure 12 shows results of the head segmentation task of the four algorithms on two different models from
the test set. The first two rows show the first model from two viewing directions, and the third and fourth
rows show the second model. For both models our segmentation was satisfactory while the segmentation of
the remaining methods was suboptimal. The small variability in the head shape in our parametric space, as
well invariance to cuts that could pass through the head, allow our method to learn the head function to a
greater accuracy.
In an additional experiment we replaced the weighted aggregation method described in (8) with maximal ag-
gregation method and found that the performance of all methods degraded, with our algorithm still providing
superior results to the alternative methods.

5.6 Applications

In this section we demonstrate the usefulness of our method for two applications: semantic segmentation
and automatic landmark detection on anatomical surfaces.

Training set

Test set

Figure 13: Examples from the semantic segmentation training set.

5.6.1 Semantic segmentation of surfaces

We applied our algorithm to the task of semantic segmentation of human models. As training data we
used 370 models from SCAPE, FAUST, MIT (excluding two classes which are not suitable for full-body
segmentation), and Adobe Fuse [3]. All models are manually segmented into eight labels according to the
labels in [119]. Our test set is again the 18 models from the SHREC07 dataset in human category (all
sphere-like models). Note that, in contrast with previous works, the training set does not include any models
from the SHREC07 dataset which we use solely for testing. Figure 13 shows examples from the training
set.

22

Doctoral Dissertation Haggai Maron August 2019

method # feat features used accuracy
Ours 10 normals, Euclidean, curv. 81.6%
Guo 10 normals, Euclidean, curv. 43.6%
Ours 26 WKS, AGD, curv. 88.0%
Guo 26 WKS, AGD, curv. 76.0%
Guo 600 HKS, WKS, AGD, curv. 87.8%

Table 2: Semantic segmentation results.

Figure 14: Results of our method for human body segmentation. Bottom right: Failure case where part of the thigh
was incorrectly identified.

We generated data from 300 triplets per model in the training set which resulted in approximately 110K
segmented images. The networks converged after 30-50 epoches. We compared our method to the state-of-
the-art CNN method for mesh segmentation [99]. Both methods were trained on the same training data. Gou
et al. also use convolutional nets, but on per-triangle features reshaped to a square grid. These convolutions
do not enable aggregating information from nearby regions on the surface, so to get global context Guo et
al. need to leverage global features. The training set for Guo et al. was created by randomly sampling ⇠ 360k
triangles from the set of training models. We applied their method with different sets of training features
(ranging from 10 to 600) and as shown in Table 2 their performance drops considerably as the number
of training features decreases; accuracy is measured as ratio of correctly labeled triangles, weighted by
triangle areas. In contrast, our method can learn features by leveraging convolution defined over the surface,
demonstrating consistently better performance with the same number of features. In fact, our method,
using only 26 features, modestly outperforms the method of Guo et al. with 600 features, see Table 2 (for
evaluation we used ⇢ = 260/480 triplets for 26/10 features, respectively). Figure 14 shows several results
obtained with our algorithm.
Figure 15 shows the segmentation accuracy for the above 26 feature experiment as a function of the number
of triplets ⇢ used for aggregation. Using 5 triplets already provides meaningful results, while 10 triplets are
almost identical to the final result with ⇠ 300 triplets.
Figure 16 shows successful application of the human segmentation method to shapes from other classes:
robot [263], armadillo and four-legged [91]. Note that although the training set contains only standard
human segmentation data (see Figure 13), the network still produces plausible segmentations on this very
different set of models. This demonstrates the robustness and generalization power of our method.
The robot example also demonstrates a possible way to bypass the sphere topology restriction of our method:

23

Doctoral Dissertation Haggai Maron August 2019

0 100 200 300

Number of triplets

0

50

100

Se
gm

en
ta

tio
n

ac
cu

ra
cy

 [%
]

ρ=1 ρ=5 ρ=10 ρ=50
Figure 15: Average result of human body segmentation as a function of the number of triplets used in the prediction
(using 26 features on the SHREC07 dataset).

In this case the input surface contains multiple connected components and non-manifold edges. We approxi-
mated the input with a genus-0 surface using a simple reconstruction algorithm [269] and applied our method
to it. The result (shown on the approximated surface) is plausible.

Figure 16: Results of our algorithm trained solely on human body semantic segmentation applied to surfaces from
other classes. Note that the method still produces semantic plausible results, which demonstrates the strong general-
ization power of the method.

5.6.2 Landmark detection on anatomical surfaces

Our algorithm can be applied to automatic landmark detection on 3D shapes in general and on biological
data in particular. Here we show results of an experiment we conducted on models of animal teeth from
the [34] dataset. On each tooth 6 biologically significant landmarks where manually marked by experts.
Our task here is to detect these landmarks on an unseen tooth. For this purpose we took 81 teeth from this
dataset, converted them to sphere topology using [117] and marked each landmark area using a geodesic
disk of constant radius. We trained on a random subset of 73 teeth and tested on 8 models. For each tooth we
generated 125 triplets, resulting in a training set of approximately 9K images. For the input ”easy” function
we only used curvature and (the logarithm of) the conformal scale factor. The network converged after 50
epoches.
Figure 17 shows the results we obtained on all eight test models. In a dashed rectangle we show the ground-
truth labeling for the tooth in the middle of the first row. Although we used only a five-dimensional vector
of basic features our method was successful in identifying most of the landmarks despite the local as-well
as global variability in the data.
This dataset contains both right-side as-well as left-side teeth. The landmarks are therefore reflected when
comparing right- and left-side teeth. Remarkably, our algorithm is able to correctly label landmarks on both
right- and left-side teeth according to their biological meaning and is not ”fooled” by their orientation (see
the first tooth in the second row).

24

Doctoral Dissertation Haggai Maron August 2019

Figure 17: Landmark detection in anatomical surfaces. Results on the test set are shown; in dashed rectangle we show
ground-truth for the tooth in the middle of the first row.

In the bottom row of Figure 17, one of the landmark areas in the first tooth from the left is small, but is still
detected. In the middle tooth 5/6 landmarks were detected successfully and one is missing (possibly due
to the lack of the ridge on which the missing landmark is usually marked). In the last tooth on the right
only one landmark was detected successfully. The failure in this case may be related to the fact that both
the genus of the animal and the specific peak structure are not represented in the training set [155]. This
experiment further demonstrates the ability of our method to learn high-level semantic data from low-level
information on the surface.
Using the output of our algorithm, we extract the point landmarks by computing the geodesic centroid of
each label. Figure 18 shows a quantitative evaluation of the keypoints we extracted using the above method
compared to ground truth. We plot the fraction of the predicted points (y-axis) that are within a certain
geodesic error threshold of their true position (x-axis). We compared our algorithm to a baseline random
forest classifier [35] (using maltab’s implementation) which was recently shown to be a successful classifier
for shape analysis problems [207]. The input per-face feature vectors consisted of the 600 WKS, HKS,
curvature and AGD as before, with additional (logarithm of) the conformal scale factor generate with 125
triplet (generated as above). We tried two versions - the first with 50 trees and 73K sampled faces and the
second with 100 trees and 292K sampled faces. Our algorithm was able to extract more accurate landmarks
despite the large number and expressive power of the features fed to the baseline.

GT
Ours

0 0.2 0.4 0.6 0.8
Geodesic error

0

50

100

%
 c

or
re

sp
on

de
nc

es

Ours
Random forest 1
Random forest 2

Figure 18: Quantitative evaluation of the landmarks extracted by our method.

25

Doctoral Dissertation Haggai Maron August 2019

In Figure 19 we show a smooth bijective map between a pair of teeth obtained by interpolating the 6 land-
marks identified by our method. The map was obtained using the method of [6]. This provides a fully
automatic pipeline for producing semantically correct mappings between biological surfaces.

5.6.3 Timing

We present average running times. Computing the parameterization on a mesh with 12.5K vertices takes
0.862 seconds for a given triplet of cones. Computing the scale factor of the parametrization (used for
aggregation) takes 0.534 seconds. The training can process about one image with 5-26 channels per second
for a single GPU in Nvidia K80. We used three such dual GPUs which made the training 6 times faster. For a
dataset containing 110k images (as in the full segmentation experiment) a single epoch takes about 5 hours.
Feed-forward calculation in the network (using a single GPU of Nvidia K80) takes 0.35 seconds on average
for a single image with 5-26 channels. Full prediction for a single triplet (feed-forward and pull-back of
functions to the surface) takes about 2.94 seconds, and this process can be parallelized for multiple triplets.
Consequently, in case of sequential runs, a prediction on a single model with 1/10/50 triples takes 3/30/150
seconds. Using 50 triples, it takes 45 minutes to calculate predictions on the human class of SHREC07 and
20 minutes on the teeth dataset. These experiments were done on an Intel Xeon E5 CPU with 64GB of
RAM.

Figure 19: A visualization of a map between teeth obtained by interpolating the correspondence between the 6
landmarks found automatically by our method.

5.7 Conclusion

We presented a methodology and an algorithm for applying deep convolutional neural networks to geometric
surfaces. The algorithm is based on seamless, conformal mapping of surfaces to the flat-torus on which
convolution is well defined. Standard CNN architecture can then be used with minor modifications to
perform supervised learning on the flat-torus. We demonstrated the usefulness of our approach for semantic
segmentation and automatic landmark detection on anatomical surfaces, and showed it compares favorably
to competing methods.
A limitation of our technique is that it assumes the input shape is a mesh with a sphere-like topology. An
interesting direction for future work is extending our method to meshes with arbitrary topologies. This prob-
lem is especially interesting since in certain cases shapes from the same semantic class may have different
genus. Another limitation is that currently aggregation is done as a separate post-process step and not as a
part of the CNN optimization. An interesting future work in this regard is to incorporate the aggregation in
the learning stage and produce end-to-end learning framework.

26

Doctoral Dissertation Haggai Maron August 2019

5.8 Proofs

We prove that given a bijection � : T1 ! T2 and assuming ⌧(f ⇤2 g) = ⌧(f) ⇤2 g we have that
⌧(f ⇤1 g) = ⌧(f) ⇤1 g where ⌧ = ��1

� ⌧ � �. As before, we use the notation ⌧(f) = f � ⌧ . First,

⌧(f ⇤1 g) =
⇥
(f � ��1) ⇤2 (g � �

�1)
⇤
� � �

⇥
��1

� ⌧ � �
⇤

=
⇥
(f � ��1) ⇤2 (g � �

�1)
⇤
� ⌧ � �

= ⌧
⇥
(f � ��1) ⇤2 (g � �

�1)
⇤
� �

On the other hand we have

⌧(f) ⇤1 g =
⇥
(⌧(f) � ��1) ⇤2 (g � �

�1)
⇤
� �

=
⇥
(f � ��1

� ⌧ � � � ��1) ⇤2 (g � �
�1)
⇤
� �

=
⇥
(f � ��1

� ⌧) ⇤2 (g � �
�1)
⇤
� �

=
⇥
⌧(f � ��1) ⇤2 (g � �

�1)
⇤
� �

= ⌧
⇥
(f � ��1) ⇤2 (g � �

�1)
⇤
� �,

where in the last equality we used the invariance of ⇤2 to ⌧ . We proved invariance of ⇤1 to ⌧ .

27

Doctoral Dissertation Haggai Maron August 2019

6 Convolutional neural networks on point clouds by extension operators

This section is based on [14].

6.1 Introduction

Extension Convolution Restriction

Figure 20: A new framework for applying convolution to functions defined over point clouds: First, a function over
the point cloud (in this case the constant one) is extended to a continuous volumetric function over the ambient space;
second, a continuous volumetric convolution is applied to this function (without any discretization or approximation);
and lastly, the result is restricted back to the point cloud.

The huge success of deep learning in image analysis motivates researchers to generalize deep learning
techniques to work on 3D shapes. Differently from images, 3D data has several popular representation,
most notably surface meshes and points clouds. Surface-based methods exploit connectivity information for
3D deep learning based on rendering [229], local and global parameterization [162, 223, 157], or spectral
properties [261]. Point cloud methods rely mostly on points’ locations in three-dimensional space and need
to implicitly infer how the points are connected to form the underlying shape.
The goal of this section is to introduce Point Cloud Convolutional Neural Networks (PCNN) generalizing
deep learning techniques, and in particular Convolutional Neural Networks (CNN) [136], to point clouds.
As a point cloud X ⇢ R3 is merely an approximation to some underlying shape S, the main challenges
in building point cloud networks are to achieve: (i) Invariance to the order of points supplied in X; (ii)
Robustness to sampling density and distribution of X in S; and (iii) Translation invariance of the convolution
operator (i.e., same convolution kernel is used at all points) .
Invariance to point order in X was previously tackled in [196, 202, 195, 264] by designing networks that
are composition of euuquivariant layers (i.e., commute with permutations) and a final symmetric layer (i.e.,
invariant to permutations). As shown in [202], any linear equivariant layer is a combination of scaled identity
and constant linear operator and therefore missing many of the degrees of freedom existing in standard linear
layers such as fully connected and even convolutional.
Volumetric grid methods [252, 163, 194, 204] use 3D occupancy grid to deal with the point order in X and
provide translation invariance of the convolution operator. However, they quantize the point cloud to a 3D
grid, usually producing a crude approximation to the underlying shape (i.e., piecewise constant on voxels)
and are confined to a fixed 3D grid structure.
Our approach toward these challenges is to define CNN on a point cloud X using a pair of operators we
call extension EX and restriction RX . The extension operator maps functions defined over the point cloud
X to volumetric functions (i.e., functions defined over the entire ambient space R3), where the restriction
operator does the inverse action. Using EX ,RX we can translate operators such as Euclidean volumetric
convolution to point clouds, see Figure 20. In a nutshell, if O is an operator on volumetric functions then its
restriction to the point cloud X would be

OX = RX �O � EX . (9)

28

Doctoral Dissertation Haggai Maron August 2019

We take EX to be a Radial Basis Function (RBF) approximation operator, and RX to be a sampling operator,
i.e., sample a volumetric function at the points in X . As O we take continuous volumetric convolution
operators with general kernels represented in the RBF basis as-well. In turn (9) is calculated using a
sparse linear tensor combining the learnable kernel weights k, function values over the point cloud X , and
a tensor connecting the two, defined directly from the point cloud X .
Since our choice of EX is invariant to point order in X , and RX is an equivariant operator (w.r.t. X) we get
that OX in (9) is equivariant. This construction leads to new equivariant layers, in particular convolutions,
with more degrees of freedom compared to [202, 196, 264]. The second challenge of robustness to sampling
density and distribution is addressed by the approximation power of the extension operator EX . Given a
continuous function defined over a smooth surface, f : S ! R, we show that the extension of its restriction
to X approximates the restriction of f to S, namely

EX �RX [f] ⇡ f
���
S

.

This means that two different samplings X,X 0
⇢ S of the same surface function are extended to the

same volumetric function, up to an approximation error. In particular, we show that extending the simplest,
constant one function over the point cloud, EX [1], approximates the indicator function of the surface S,
while the gradient, rEX [1], approximates the mean curvature normal field over the surface. Then, the
translation invariance and robustness of our convolution operator naturally follows from the fact that the
volumetric convolution is translation invariant and the extension operator is robust.
PCNN provides a flexible framework for adapting standard image-based CNNs to the point cloud setting,
while maintaining data only over the point cloud on the one hand, and learning convolution kernels robust
to sampling on the other. We have tested our PCNN framework on standard classification, segmentation and
normal estimation datasets where PCNN outperformed all other point cloud methods and the vast majority
of other methods that use more informative shape representations such as surface connectivity.

6.2 Previous Work

We review different aspects of geometric deep learning with a focus on the point cloud setting. For a more
comprehensive survey on geometric deep learning we refer the reader to [39].

Deep learning on point clouds. PointNet [196] pioneered deep learning for point clouds with a Siamese,
per-point network composed with a symmetric max operator that guarantees invariance to the points’ order.
PointNet was proven to be a universal approximator (i.e., can approximate arbitrary continuous functions
over point clouds). A follow up work [195] suggests a hierarchical application of the PointNet model to
different subsets of the point cloud; this allows capturing structure at different resolutions when applied
with a suitable aggregation mechanism. In [98] the PointNet model is used to predict local shape properties
from point clouds. In a related work [202, 264] suggest to approximate set function, with equivariant
layers composed with a symmetric function such as max. Most related to our work is the recent work of
[129] that suggested to generalize convolutional networks to point clouds by defining convolutions directly
on kd-trees built out of the point clouds [24], and [216] that suggested a convolutional architecture for
modeling quantum interactions in molecules represented as point clouds, where convolutions are defined by
multiplication with continuous filters. The main difference to our work is that we define the convolution of
a point cloud function using an exact volumetric convolution with an extended version of the function. The
approximation properties of the extended function facilitate a robust convolution on point clouds.

29

Doctoral Dissertation Haggai Maron August 2019

Volumetric methods. Another strategy is to generate a tensor volumetric representation of the shape re-
stricted to a regular grid (e.g., by using occupancy indicators, or a distance function) [252, 163, 194]. The
main limitation of these methods is the approximation quality of the underlying shape due to the low resolu-
tion enforced by the three dimensional grid structure. To overcome this limitation a few methods suggested
to use sparse three dimensional data structures such as octrees [244, 204]. Our work can be seen as a gen-
eralization of these volumetric methods in that it allows replacing the grid cell’s indicator functions as the
basis for the network’s functions and convolution kernels with more general basis functions (e.g., radial
basis functions).

Deep learning on Graphs. Shapes can be represented as graphs, namely points with neighboring re-
lations. In spectral deep learning the convolution is being replaced by a diagonal operator in the graph-
Laplacian eigenbasis [43, 63, 109]. The main limitation of these methods in the context of geometric deep
learning is that different graphs have different spectral bases and finding correspondences between the bases
or common bases is challenging. This problem was recently targeted by [261] using the functional map
framework.

Deep learning on surfaces. Other approaches to geometric deep learning work with triangular meshes that
posses also connectivity and normal information, in addition to the point locations. One class of methods
use rendering and 2D projections to reduce the problem to the image setting [229, 120]. Another line of
works uses local surface representations [162, 32, 171] or global parameterizations of surfaces [223, 157]
for reducing functions on surfaces to the planar domain or for defining convolution operators directly over
the surfaces.

RBF networks. RBF networks are a type of neural networks that use RBF functions as an activation layer,
see [183, 184]. This model was first introduced in [40], and was used, among other things, for function
approximation and time series prediction. Usually, these networks have three layers and their output is
a linear combination of radial basis functions. Under mild conditions this model can be shown to be a
universal approximator of functions defined on compact subsets of Rd [188]. Our use of RBFs is quite
different: RBFs are used in our extension operator solely for the purpose of defining point cloud operators,
whereas the ReLU is used as an activation.

6.3 Method

Notations. We will use tensor (i.e., multidimensional arrays) notation, e.g., a 2 RI⇥I⇥J⇥L⇥M . Indexing
a particular entry is done using corresponding lower-case letters, aii0jlm, where 1 i, i0 I , 1 j J ,
etc. When summing tensors c =

P
ijl

aii0jlmbijl, where b 2 RI⇥J⇥L the dimensions of the result tensor c
are defined by the free indices, in this case c = ci0m 2 RI⇥M .

Goal. Our goal is to define convolutional neural networks on point clouds X = {xi}
I

i=1 2 RI⇥3. Our
approach to defining point cloud convolution is to extend functions on point clouds to volumetric functions,
perform standard Euclidean convolution on these functions and sample them back on the point cloud.
We define an extension operator

EX : RI⇥J
! C(R3,RJ), (10)

30

Doctoral Dissertation Haggai Maron August 2019

where RI⇥J represents the collection of functions f : X ! RJ , and C(R3,RJ) volumetric functions
 : R3

! RJ . Together with the extension operator we define the restriction operator

Rx : C(R3,RM) ! RI⇥M . (11)

Given a convolution operator O : C(R3,RJ) ! C(R3,RM) we adapt O to the point cloud X via (9). We
will show that a proper selection of such point cloud convolution operators possess the following desirable
properties:

1. Efficiency: OX is computationally efficient.

2. Invariance: OX is indifferent to the order of points in X , that is, OX is equivariant.

3. Robustness: Assuming X ⇢ S is a sampling of an underlying surface S, and f 2 C(S,R), then
EX �RX [f] 2 C(R3,R) approximates f when sampled over S and decays to zero away from S. In
particular EX [1] approximates the volumetric indicator function of S, where 1 2 RI⇥1 is the vector of
all ones; rEX [1] approximates the mean curvature normal field over S. The approximation property
in particular implies that if X,X⇤

⇢ S are different samples of S then OX ⇡ OX⇤.

4. Translation invariance: OX is translation invariant, defined by a stationary (i.e., location independent)
kernel.

In the next paragraphs we define these operators and show how they are used in defining the main building
blocks of PCNN, namely: convolution, pooling and upsampling. We discuss the above theoretical properties
in Section 6.4.

6.3.1 Extension operator

The extension operator EX : RI⇥J
! C(R3,RJ) is defined as an operator of the form,

EX [f](x) =
X

i

fij`i(x), (12)

where f 2 RI⇥J , and `i 2 C(R3,R) can be thought of as basis functions defined per evaluation point x. One
important family of bases are the Radial Basis Functions (RBF), that were proven to be useful for surface
representation[26, 47]. For example, one can consider interpolating bases (i.e., satisfying `i(xi0) = �ii0)
made out of an RBF � : R+ ! R. Unfortunately, computing (12) in this case amounts to solving a dense
linear system of size I ⇥ I . Furthermore, it suffers from bad condition number as the number of points is
increased [248]. In this section, we will advocate a novel approximation scheme of the form

`i(x) = c!i�(|x� xi|), (13)

where c is a constant depending on the RBF � and !i can be thought of the amount of shape area corre-
sponding to point xi. A practical choice of !i is

!i =
1

c
P

i0 �(|xi0 � xi|)
. (14)

Note that although this choice resembles the Nadaraya-Watson kernel estimator [178], it is in fact different
as the denominator is independent of the approximation point x; this property will be useful for the closed-
form calculation of the convolution operator.

31

Doctoral Dissertation Haggai Maron August 2019

Figure 21: Applying the extension operator to the constant 1 function over three airplane point clouds in different
sampling densities: 2048, 1024 and 256 points. Note how the extended functions resemble the airplane indicator
function, and hence similar to each other.

As we prove in Section 6.4, the point cloud convolution operator, OX , defined using the extension operator,
(12)-(13), satisfies the properties (1)-(4) listed above, making it suitable for deep learning on point clouds.
In fact, as we show in Section 6.4, robustness is the result of the extension operator EX approximating
a continuous, sampling independent operator over the underlying surface S denoted ES . This continuous
operator applied to a function f , ES [f], is proved to approximate the restriction of f to the surface S.
Figure 21 demonstrates the robustness of our extension operator EX ; applying it to the constant one function,
evaluated on three different sampling densities of the same shape, results in approximately the same shape.

6.3.2 Kernel model

We consider a continuous convolution operator O : C(R3,RJ) ! C(R3,RM) applied to vector valued
function 2 C(R3,RJ),

O[](x) = ⇤ (x) =

Z

R3

X

j

 j(y)jm(x� y) dy, (15)

where 2 C(R3,RJ⇥M) is the convolution kernel that is also represented in the same RBF basis:

jm(z) =
X

l

kljm�(|z � yl|), (16)

where with a slight abuse of notation we denote by k 2 RL⇥J⇥M the tensor representing the continuous ker-
nel in the RBF basis. Note, that k represents the network’s learnable parameters, and has similar dimensions
to the convolution parameters in the image case (i.e., spatial dimensions ⇥ input channels ⇥ output chan-
nels).

The translations {yl}Ll=1 ⇢ R3 are also a degree of freedom and can be chosen to generate a regular
3⇥3⇥3 grid or any other point distribution such as spherical equispaced points. The translations can
be predefined by the user or learned (with some similarly to [60]). See inset for illustration of some
possible translations.

6.3.3 Restriction operator

Our restriction operator RX : C(R3,RJ) ! RI⇥J is the sampling operator over the point cloud X ,

RX [] = j(xi), (17)

where 2 C(R3,RJ). Note that RX [] 2 RI⇥J .

32

Doctoral Dissertation Haggai Maron August 2019

I×J I×M

L×J×M
I×I×L

Input channels Output channels

•

*

Point cloud specific
sparse tensor

f

k q

Figure 22: Point cloud convolution operator, computational flow.

6.3.4 Sparse extrinsic convolution

We want to compute the convolution operator OX : RI⇥J
! RI⇥M restricted to the point cloud X as

defined in (9) with the convolution operator O from (15). First, we compute EX [f] ⇤ k

EX [f] ⇤ k (x) = c
X

ijl

fijkljmwi

Z

R3
�(|y � xi|)�(|x� y � yl|) dy

Applying our restriction operator finally gives our point cloud convolution operator:

OX [f] = c
X

ijl

fijkljmwiqii0l, (18)

where q = q(X) 2 RI⇥I⇥L is the tensor defined by

qii0l =

Z

R3
�(|y � xi|)�(|xi0 � y � yl|) dy. (19)

Note that OX [f] 2 RI⇥M , as desired. Equation (18) shows that the convolution’s weights kljm are applied
to the data fij using point cloud-dependent weights w, q that can be seen as ”translators” of k to the point
cloud geometry X . Figure 22 illustrates the computational flow of the convolution operator.

6.3.5 Choice of RBF

Our choice of radial basis function � stems from two desired properties: First, we want the extension
operator (12) to have approximation properties; second, we want the computation of the convolution of a
pair of RBFs in (19) to have an efficient closed-form solution. A natural choice satisfying these requirements
is the Gaussian:

��(r) = exp

✓
�

r2

2�2

◆
(20)

To compute the tensor q 2 RI⇥I⇥L in (19) we make use of the following convolution rule for Gaussians,
proved in Section 6.7 for completeness:

33

Doctoral Dissertation Haggai Maron August 2019

Lemma 1. Let � denote the Gaussian as in (20). Then,

�↵(| ·�a|) ⇤ ��(| ·�b|) / ��(| ·�a� b|), (21)

where � =
p
↵2 + �2.

6.3.6 Up-sampling and pooling

Aside from convolutions, there are two operators that perform spatially and need to be defined for point
clouds: up-sampling UX,X⇤ : RI⇥J

! RI
⇤⇥J , and pooling PX,X⇤ : RI⇥J

! RI
⇤⇥J , where X⇤

⇢ R3 is
superset of X (i.e., I⇤ > I) in the upsampling case and subset of X (i.e., I⇤ < I) in the pooling case. The
upsample operator is defined by

UX,X⇤ [f] = RX⇤ � EX [f]. (22)

Pooling does not require the extension/restriction operators and (similarly to [195]) is defined by

PX,X⇤ [f](x⇤i) = max
i2Vi⇤

fij , (23)

where Vi⇤ ⇢ {1, 2, . . . , I} denotes the set of indices of points in X that are closer in Euclidean distance to
x⇤
i

than any other point in X⇤. The point cloud X⇤
⇢ X in the next layer is calculated using farthest point

sampling of the input point cloud X .
Lastly, similarly to [121] we implement deconvolution layers by an upsampling layer followed by a regular
convolution layer.

6.4 Properties

In this section we discuss the properties of the point cloud operators we have defined above.

6.4.1 Invariance and equivariance

Given a function f 2 RI⇥J on a point cloud X 2 RI⇥3, an equivariant layer L : RI⇥J
! RI⇥M satisfies

L(⇡f) = ⇡L(f),

where ⇡ 2 ⇧I ⇢ RI⇥I is an arbitrary permutation matrix. Equivariant layers have been suggested in [196,
202, 264] to learn data in the form of point clouds (or sets in general). The key idea is that equivariant layers
can be used to represent a set function F : 2R

3
! R. Indeed, a set function restricted to sets of fixed size

(say, I) can be represented as a symmetric function (i.e., invariant to the order of its arguments). A rich class
of symmetric functions can be built by composing equivariant layers and a final symmetric layer.
The equivariance of our point cloud operators OX stems from the invariance property of the extension
operator and equivariance property of the restriction operator. We will next show these properties.

Lemma 2. The extension operators defined in (12) is invariant to permutations, i.e., E⇡X [f] = EX [f], for
all permutations ⇡ 2 ⇧I . The restriction operator (17) is equivariant to permutations, R⇡X [] = ⇡RX [],
for all ⇡ 2 ⇧I .

Proof. The properties follow from the definitions of the operators.

E⇡(X)[f] =
X

i

f⇡(i)j`⇡(i) =
X

i

fij`i = EX [f],

34

Doctoral Dissertation Haggai Maron August 2019

and
RX [] = j(x⇡(i)) = ⇧RX [].

A consequence of this lemma is that any convolution O acting on volumetric functions in R3 translates to
an equivariant operator OX ,

Theorem 1. Let O : C(R3,RJ) ! C(R3,RM) be a volumetric function operator. Then OX : RI⇥J
!

RI⇥M defined by (9) is equivariant. Namely,

O⇡X [f] = ⇡OX [f].

Theorem 1 applies in particular to convolutions (15), and therefore our point cloud convolutions are all
equivariant by construction. Note that this model provides ”data-dependent” equivariant operator that are
more general than those suggest in [202, 264].

6.4.2 Robustness

Overview. Robustness is the key property that allows applying the same convolution kernel to functions
over different irregular point clouds. The key idea is to make the extension operator produce approximately
the same volumetric function when applied to different samplings of the same underlying shape function.
To make things concrete, let X 2 RI⇥3, X⇤

2 RI
⇤⇥3 be two different point clouds samples of a compact

smooth surface S ⇢ R3. Let f 2 C(S,RJ) be some function over S and RX [f],RX⇤ [f] its sampling on
the points clouds X,X⇤, respectively.
We will show the following:

1. We introduce a continuous extension operator ES from surface functions to volumetric functions. We
show that ES has several favorable properties.

2. We show that (under mild assumptions) our extension operator EX , defined in (12)-(13) converges to
ES ,

EX �RX [f] ⇡ ES [f]. (24)

3. We deduce that (under mild assumptions) the properties of ES are inherited by EX and in particular
we have:

EX �RX [f] ⇡ EX⇤ �RX⇤ [f]. (25)

Continuous extension operator. We define ES : C(S,RJ) ! C(R3,RJ) which is an extension operator
from surface functions to volumetric functions so that ES [f]|S ⇡ f and ES [f] ! 0 away from S:

ES [f](x) =
1

2⇡�2

Z

S

f(y)��(|x� y|) da(y), (26)

where da is the area element of the surface S.
The operator ES enjoys several favorable approximation properties: First,

ES [f](x)
�!0
���!

(
f(x) x 2 S

0 otherwise
. (27)

35

Doctoral Dissertation Haggai Maron August 2019

That is, ES [f] approximates f over S and decays to zero away from S. In particular, this implies that the
constant one function, 1 : S ! R, satisfies

ES [1](x) ! �S(x), (28)

where �S(x) is the volumetric indicator function of S ⇢ R3. Interestingly, ES [1] provides also higher-order
geometric information of the surface S,

rES [1]
���
S

! �H · n, (29)

where H : S ! R is the mean curvature function of S and n : S ! S2 (S2
⇢ R3 is the unit sphere) is the

normal field to S.
We prove that the approximation quality in (24) improves as the point cloud sample X ⇢ S densifies S,
and the operator EX becomes more and more consistent. In that case EX [1] furnishes an approximation
to the indicator function of the surface S and its gradient, rEX [1], to the mean curvature vectors of S.
This demonstrates that given the simplest, all ones input data 1 2 RI⇥1, the network can already reveal
the indicator function and the mean curvature vectors of the underlying surface by simple linear operators
corresponding to specific choices of the kernel k in (16).
These results are summarized in the following theorem which is proved in Section 6.7.

Theorem 2. Let f 2 C(S,RJ) be a continuous function defined on a compact smooth surface S ⇢ R3. The
extension operator (12),(13) with

c =
1

2⇡�2
, (30)

and

!i = area(⌦i), (31a)
⌦i =

�
y 2 S | dS(y � xi) dS(y � xi0), 8i

0 , (31b)

the Voronoi cell of xi 2 S, where dS denotes the distance function of points on S, satisfies

EX �RX [f](x) ! ES [f](x), (32)

where X ⇢ S is a �-net and � ! 0. Furthermore, ES satisfies the approximation and mean curvature
properties as defined in (27), (28), (29).

6.4.3 Revisiting image CNNs

Our model is a generalization of image CNNs. Images can be viewed as point clouds in regular grid config-
uration, X = {xi} ⇢ R3, with image intensities Ii as functions over this point cloud,

EX(I) =
X

i

Ii�(x� xi),

where � is the indicator function over one square grid cell (i.e., pixel). In this case the extension operator
reproduces the image as a volumetric function over R2. Writing the convolution kernel also in the basis �
with regular grid translations leads to (9) reproducing the standard image discrete convolution.

36

Doctoral Dissertation Haggai Maron August 2019

Convolu�on
layers

Convolu�on
layers

Fully conected
layers

Deconvolu�on
layers

Skip layer connec�ons

Labels

(a)

(b)

 Per-vertex
labels

Figure 23: Different architectures used in the section: (a) classification network; and (b) segmentation network.

6.5 Experiments

We have tested our PCNN framework on the problems of point cloud classification, point cloud segmen-
tation, and point cloud normal estimation. We also evaluated the different design choices and network
variations.

6.5.1 Point cloud classification

We tested our method on the standard ModelNet40 and ModelNet10 benchmarks [252]. ModelNet40 is
composed of 9843 train models and 2468 test models in 40 different classes, such as guitar, cone, laptop
etc. ModelNet 10 consists 3991 train and 908 test models from ten different classes. The models are
originally given as triangular meshes. The upper part of Table 3 compares our classification results versus
state of the art learning algorithms that use only the point clouds (i.e., coordinates of points in R3) as input:
PointNet [196], PointNet++ [195], deep sets [264], ECC[220] and kd-network[129]. For completeness we
also provide results of state of the art algorithms taking as input additional data such as meshes and normals.
Our method outperforms all point cloud methods and all other non-ensemble methods.
We use the point cloud data of [196, 195] that sampled a point cloud from each model using farthest point
sampling. In the training we randomly picked 1024 farthest point sample out of a fixed set of 1200 farthest
point sample for each model. As in [129] we also augment the data with random anisotropic scaling in the
range [�0.66, 1.5] and uniform translations in the range [�0.2, 0.2]. As input to the network we provide
the constant one tensor, together with the coordinate functions of the points, namely (1, x) 2 RI⇥4. The
� parameter controls the variance of the RBFs (both in the convolution kernels and the extension operator)
and is chosen to be � = I�1/2. The translations of the convolution are chosen to be regular 3 ⇥ 3 ⇥ 3 grid
with size 2�.
At test time, similarly to [129] we use voting: we sample ten different samples of size 1024 from 1200 points
on each point cloud, apply anisotropic scaling, propagate it through the net and sum the label probability
vectors before taking the label with the maximal probability.

37

Doctoral Dissertation Haggai Maron August 2019

We used standard convolution architecture, see Figure 23:

conv block(1024, 256, 64) ! conv block(256, 64, 256)

! conv block(64, 1, 1024) ! fully connected block,

where conv block(#points in, #points out ,#channels) consists of a convolution layer, batch normalization,
Relu activation and pooling. The fully connected block is a concatenation of a two fully connected layers
with dropout after each one.

algorithm # points 10 models 40 models

Point cloud methods

pointnet [196] 1024 - 89.2
pointnet++ [195] 1024 - 90.7
deep sets [264] 1000 - 87.1
ECC [220] 1000 90.8 87.4
kd-network [129] 1024 93.3 90.6
kd-network [129] 32k 94.0 91.8
ours 1024 94.9 92.3

Additional input features

FusionNet (uses mesh structure) [106] - 93.1 90.8
VRN single(uses mesh structure) [37] - - 92.0
OctNet [204] - 90.9 86.5
VRN ensemble(uses mesh structure) [37] - 97.1 95.5
MVCNN (uses mesh structure)[194] - - 92.0
MVCNN-MultiRes(uses mesh structure)[194] - - 93.8
pointnet++ (uses normals) [195] 5K - 91.9
OCNN (uses normals) [244] - - 90.6

Table 3: Shape classification results on the ModelNet40 and ModelNet10 datasets.

Robustness to sampling. The inset compares our method with [196, 195] when feeding a trained 1024
point model on sparser test point clouds of size k = 1024, 512, 256, 128, 64.

0 0.5 1
DissinŐ Ěaƚa ra�o

40

60

80

100

Ac
cu

ra
cy

 (%
)

Ours
poinƚneƚ
poinƚneƚнн

The favorable robustness of our method to sub-sampling can be possibly ex-
plained by the fact that our extension operator possess approximation power,
even with sparse samples, e.g., for smooth shapes, see Figure 21.

Method variants. We evaluate the performance of our algorithm subject to
the variation in: the number of points I , the kernel translations {yl}, the input
tensor f , different bases `i in (12), the choice of �, and number of learnable
parameters. Points were randomly sampled by the same ratio as in the above
(e.g. 512 out of 600).
Table 4 presents the results. Using the constant one as input f = 1 2 RI⇥1 provides almost comparable
results to using the full coordinates of the points f = (1, x) 2 RI⇥4. This observation is partially sup-
ported by the theoretical analysis shown in section 6.4 which states that our extension operator applied to
the constant one tensor already provides good approximation to the underlying surface and its normal as

38

Doctoral Dissertation Haggai Maron August 2019

Method variations on ModelNet40

Variation # points accuracy

Less points 256 90.8
Less points 512 91.2
Less points 870 92.2
More points 1800 92.3
Interpolation 1024 92.0
Spherical kernel 1024 91.5
Learned translations 1024 91.3
Indicator input 1024 91.2
xyz only input 1024 91.5
Less parameters 1024 92.2
Small sigma 1024 85.5

Table 4: Classification with variations to the PCNN model.

well as curvature. Using interpolation basis {`i} in the extension operator (12), although heavier compu-
tationally, does not provide better results. Applying too small � provides worse classification result. This
can be explained by the observation that small � results in separated Gaussians centered at the points which
deteriorates the approximation (X and � should be related). Interestingly, using a relatively small network
size of 1.4M parameters provides comparable classification result.

(a)

(b)

Figure 24: Our point cloud convolution is translation invariant and robust to sample size and density: (a) shows feature
activations of two kernels (rows) learned by our network’s first convolution layer on different shapes (columns). The
features seems consistent across the different models; (b) shows another pair of kernels (rows) on a single model with
varying sampling density (from left to right): 10K points, 5K points (random sampling), 1K points (farthest point
sampling) and 1K (random sampling). Note that the convolution captures the same geometric properties on all models
regardless of the sampling.

39

Doctoral Dissertation Haggai Maron August 2019

Feature visualizations. Figure 24 visualizes the features learned in the first layer of PCNN on a few
shapes from the ModelNet40 dataset. As in the case of images, the features learned on the first layer are
mostly edge detectors and directional derivatives. Note that the features are consistent through different
sampling and shapes. Figure 25 shows 9 different features learned in the third layer of PCNN. In this layer
the features capture more semantically meaningful parts.

Figure 25: High level features learned by PCNN’s third convolution layer and visualized on the input point cloud.
As expected, the features are less geometrical than the first layer’s features (see Figure 24) and seem to capture more
semantically meaningful shape parts.

6.5.2 Point cloud segmentation

Our method can also be used for part segmentation: given a point cloud that represents a shape the task is to
label each point with a correct part label. We evaluate PCNN performance on ShapeNet part dataset [260].
ShapeNet contains 16,881 shapes from 16 different categories, and total of 50 part labels.
Table 5 compares per-category and mean IoU(%) scores of PCNN with state of the art point cloud methods:
PointNet [196], kd-network [129], and 3DCNN (results taken from [196]). Our method outperforms all of
these methods. For completeness we also provide results of other methods that use additional shape features
or mesh normals as input. Figure 26 depicts several of our segmentation results.
For this task we used standard convolution segmentation architecture, see Figure 23:

conv block(2048, 512, 64) ! conv block(512, 128, 128)

! conv block(128, 16, 256) ! deconv block(16, 128, 512)

! deconv block(128, 512, 256) ! deconv block(512, 2048, 256)

! deconv block(2048, 2048, 256) ! conv block(2048, 2048, 50),

where deconv block(#points in,#points out,#features) consists of an upsampling layer followed by a convo-
lution block. In order to provide the last layers with raw features we also add skip-layers connections, see
Figure 23(b). This is a common practice in such architectures where fine details are needed at the output
layer (e.g., [51]).

40

Doctoral Dissertation Haggai Maron August 2019

We use the data from [196] (2048 uniformly sampled points on each model). As done in [196] we use a
single network to predict segmentations for each of the object classes and concatenate a hot-one encoding
of the object’s label to the bottleneck feature layer. At test time, we use only the part labels that correspond
to the input shape (as in [196, 129]).

input mean aero bag cap car chair ear-p guitar knife lamp laptop motor mug pistol rocket skate table

Point clouds

Ours 2K pnts 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
PointNet 2K pnts 83.7 83.4 78.7 82.5 74.9 89.6 73 91.5 85.9 80.8 95.3 65.2 93 81.2 57.9 72.8 80.6
kd-network 4K pnts 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81 94.9 57.4 86.7 78.1 51.8 69.9 80.3
3DCNN 79.4 75.1 72.8 73.3 70 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1

Additional input

SyncSpecCNN sf 84.7
Yi sf 81.4 81 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3
PointNet++ pnts, nors 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
OCNN (+CRF) nors 85.9 85.5 87.1 84.7 77.0 91.1 85.1 91.9 87.4 83.3 95.4 56.9 96.2 81.6 53.5 74.1 84.4

Table 5: ShapeNet segmentation results by point cloud methods (top) and methods using additional input data (sf -
shape features; nors - normals). The methods compared to are: PointNet [196]; kd-network [129]; 3DCNN [196];
SyncSpecCNN [261]; Yi [260]; PointNet++ [195]; OCNN (+CRF refinement) [244].

Figure 26: Results of PCNN on the part segmentation benchmark from [260]

6.5.3 Normal estimation

Estimating normals of a point cloud is a central sub-problem of the 3D reconstruction problem. We cast this
problem as supervised regression problem and employ segmentation network with the following changes:
the output layer is composed of 3 channels instead of 50 which are then normalized and fed into cosine-loss
with the ground truth normals.
We have trained and tested our network on the standard train/test splits of the ModelNet40 dataset (we used
the data generator code by [195]). Table 6 compares the mean cosine loss (distance) of PCNN and the
normal estimation of [196] and [195]. Figure 27 depicts normal estimation examples from this challenge.

Data algorithm # points error

ModelNet40 PointNet 1024 0.47
PointNet++ 1024 0.29
ours 1024 0.19

Table 6: Normal estimation in ModelNet40.

41

Doctoral Dissertation Haggai Maron August 2019

GT Ours Pointnet Pointnet++
Figure 27: Normal estimation in ModelNet40. We show normal estimation of four models (rows) with blow-ups.
Normals are colored by one of their coordinates for better visualization. Note that competing methods sometimes fail
to recognize the outward normal direction (examples indicated by red arrows).

42

Doctoral Dissertation Haggai Maron August 2019

6.5.4 Training details, timings and network size

We implemented our method using the TensorFlow library [1] in Python. We used the Adam optimization
method with learning rate 0.001 and decay rate 0.7. The models were trained on Nvidia p100 GPUs. Table
7 summarizes running times and network sizes. Our smaller classification network achieves state of the art
result (see Table 4, previous to last row) and has only 1.4M parameters with a total model size of 17 MB.

#Param. Size
(mb)

Converge
(epochs)

Training
(min)

Forward
(msec)

Classification

Large 8.1M 98 250 6 80
Small 1.4M 17 250 5 70

Segmentation

5.4M 62 85 37 200

Table 7: Timing and network size. Training time is measured in minuets per epoch.

6.6 Conclusions

This section describes PCNN: a methodology for defining convolution of functions over point clouds that
is efficient, invariant to point cloud order, robust to point sampling and density, and posses translation
invariance. The key idea is to translate volumetric convolution to arbitrary point clouds using extension and
restriction operators.
Testing PCNN on standard point cloud benchmarks show state of the art results using compact networks.
The main limitation of our framework compared to image CNN is the extra computational burden due to
the computation of farthest point samples in the network and the need to compute the “translating” tensor
q 2 RI⇥I⇥L which is a function of the point cloud X . Still, we believe that a sparse efficient implementation
can alleviate this limitation and mark it as a future work. Other venues for future work is to learn kernel
translations per channel similarly to [60], and apply the method to data of higher dimension than d = 3
which seems to be readily possible. Lastly, we would like to test this framework on different problems and
architectures.

6.7 Proofs

6.7.1 Multiplication law for Gaussians

Proposition 1. Let

�µ,�(x) = exp(�
kx� µk2

2�2
)

and
B(�) =

1

(2⇡�2)
3
2

then
�µ1,�1 ⇤ �µ2,�2 = C(�1,�2) · �µ,�

where µ = µ1 + µ2, � =
p
�21 + �22 and C(�1,�2) =

B(�1)B(�2)
B(�)

43

Doctoral Dissertation Haggai Maron August 2019

Proof. It is well known [247] that the convolution of two normal distributions is again a normal distribution:

B(�1)�µ1,�1 ⇤B(�2)�µ2,�2 = B(
q
�21 + �22) · �µ,�

The result above follows from the linearity of the convolution.

6.7.2 Theoretical properties of the extension operator

Proof of theorem 2. Let us first show (32). Denote gx(y) = f(y)��(|x � y|). By Lemma 4 for arbitrary
✏ > 0 there exists � > 0 so that dS(y, x) < � implies |gx(y)� gx(x)| < ✏ for all x 2 R3. Taking X to be
�-net of S we get that

���ES [f](x)� EX �RX [f](x)
��� ✏

P
i
area(⌦i)

2⇡�2
 ✏

area(S)

2⇡�2
.

To show (27) first let x /2 S. Then as � ! 0 we have maxy2S ��(|y�x|) ! 0 and therefore ES [f](x) ! 0.
Next consider x 2 S. It is enough to show that

1

2⇡�2

Z

S

��(|x� y|)da(y)
�!0
���! 1.

Indeed, let ✏ > 0. Since f is uniformly continuous, take � > 0 sufficiently small so that |f(x)� f(x0)| < ✏
if dS(x, x0) < �. Take � > 0 sufficiently small so that

1

2⇡�2

Z

S\B(x,�)
��(|x� y|)da(y) ✏,

where B(x, �) = {y | |y � x| < �} and
���

1

2⇡�2

Z

S

��(|x� y|)da(y)� 1
��� ✏.

Hence ���
1

2⇡�2

Z

S\B(x,�)
��(|x� y|)da(y)� 1

��� 2✏.

Therefore,
����

1

2⇡�2

Z

S

f(y)��(|x� y|)da(y)� f(x)

���� 3✏(1 + |f |1).

Lastly, to show (29) note that

rxES [1](x) = �
1

2⇡�4

Z

S

(x� y)�(|x� y|)da(y).

Using an argument from [21] (see Section 4.2) where we take �2 = 2t in their notation and get convergence
to �

1
2�Sx, where �S is the Laplace-Beltrami operator on surfaces S. To finish the proof remember that

[44]
�
1

2
�Sx = �H · n.

44

Doctoral Dissertation Haggai Maron August 2019

Lemma 3. Let S ⇢ R3 be a compact smooth surface. Then,

lim
�!0

1

2⇡�2

Z

S

��(|x� y|)da(y) = 1 (33)

Proof. Denote TxS the tangent plane to S centered at x 2 S. Let y = y(u) : TxS ! S be the local
parameterization to S over TxS, where u is the local coordinate at TxS. Since S is smooth and compact we
have that 8u 2 ⌥� = TxS \B(x, �),

|y(u)� u| = O(�2) (34)
||dy(u)|� 1| = O(�), (35)

where |dy(u)| is the pulled-back area element of S [67]. We break the error to
�� 1
2⇡�2

R
S
��(|x� y|)da(y)� 1

��

1

2⇡�2

Z

S\y(⌥�)
��da

(i)

+
1

2⇡�2

�����

Z

y(⌥�)
��da�

Z

⌥�

��du

�����
(ii)����

1

2⇡�2

Z

TxS

��du� 1

����
(iii)

+
1

2⇡�2

Z

TxS\⌥�

��du

(iv)

.

First, we note that (iii) = 0. Now, take � = �1�⌧ , for some fixed 0 < ⌧ < 1, where � > 0. Then,
(i) = O(�), (iv) = O(�). Lastly (ii)

1

2⇡�2

Z

⌥�

�����(|y(u)|)� ��(|u|)
���|dy(u)|du

+
1

2⇡�2

Z

⌥�

��(|u|)
��� |dy(u)|� 1

���du

1

2⇡�2

maxu2⌥�

���|y(u)|� |u|
���

�e1/2
(1 +O(�))O(�2) +O(�)

= O(�1�4⌧),

where we used Lemma 5 in the last inequality. Taking any ⌧ < 1/4 proves the result.

Lemma 4. Let f 2 C(S,R), with S ⇢ R3 a compact surface. The family of functions {gx}x2R3 defined by
gx(y) = f(y)��(|x� y|), y 2 S is uniformly equicontinuous.

Proof. |gx(y)� gx(y0)|

��f(y)� f(y0)

����(|x� y|)+��f(y0)
�� ����(|x� y|)� ��(|x� y0|)

��

��f(y)� f(y0)

��+ |f |1
|y � y0|

�e1/2

where in the last inequality we used ||x� y|� |x� y0|| |y � y0| and Lemma 5. Since f, |·| are both
uniformly continuous over S (as continuous functions over a compact surface), f is bounded, i.e., |f |1 <
1, equicontinuity of {gx} is proved.

Lemma 5. The gaussian satisfies |��(r0)� ��(r)|
(r0�r)
�e1/2

for 0 r < r0.

45

Doctoral Dissertation Haggai Maron August 2019

Proof.

����(r
0)� ��(r)

��
Z

r
0

r

t

�2
e�

t2

2�2 dt
(r0 � r)

�e1/2
,

where in the last inequality we used the fact that te�
t2

2�2 �e�1/2.

Lastly, to justify (14) let us use Theorem 2 and consider f(x) ⌘ 1,

1 ⇡ ES [f](x) ⇡ c
X

i

!i�(|x� xi|).

Plugging x = xi0 we get

1 ⇡ c
X

i

!i�(|xi0 � xi|) = c!̃i0
X

i

�(|xi0 � xi|),

where !̃i0 is an average of values of !i (note that �(|xi0 � xi|) are fast decaying weights away from xi0).
Hence,

c!̃i0 ⇡
1P

i
�(|xi0 � xi|)

.

46

Doctoral Dissertation Haggai Maron August 2019

7 Invariant graph networks

This section is based on [158].

7.1 Introduction

We consider the problem of graph learning, namely finding a functional relation between input graphs
(more generally, hyper-graphs) G` and corresponding targets T `, e.g., labels. As graphs are common data
representations, this task received quite a bit of recent attention in the machine learning community [42,
108, 172, 262].
More specifically, a (hyper-)graph data point G = (V,A) consists of a set of n nodes V , and values A
attached to its hyper-edges2. These values are encoded in a tensor A. The order of the tensor A, or equiva-
lently, the number of indices used to represent its elements, indicates the type of data it represents, as follows:
First order tensor represents node-values where Ai is the value of the i-th node; Second order tensor repre-
sents edge-values, where Aij is the value attached to the (i, j) edge; in general, k-th order tensor encodes
hyper-edge-values, where Ai1,...,ik represents the value of the hyper-edge represented by (i1, . . . , ik). For
example, it is customary to represent a graph using a binary adjacency matrix A, where Aij equals one if
vertex i is connected to vertex j and zero otherwise. We denote the set of order-k tensors by Rnk .
The task at hand is constructing a functional relation f(A`) ⇡ T `, where f is a neural network. If T ` = t`

is a single output response then it is natural to ask that f is order invariant, namely it should produce the
same output regardless of the node numbering used to encode A. For example, if we represent a graph
using an adjacency matrix A = A 2 Rn⇥n, then for an arbitrary permutation matrix P and an arbitrary
adjacency matrix A, the function f is order invariant if it satisfies f(P TAP) = f(A). If the targets T `

specify output response in a form of a tensor, T ` = T `, then it is natural to ask that f is order equivariant,
that is, f commutes with the renumbering of nodes operator acting on tensors. Using the above adjacency
matrix example, for every adjacency matrix A and every permutation matrix P , the function f is equivariant
if it satisfies f(P TAP) = P T f(A)P . To define invariance and equivariance for functions acting on general
tensors A 2 Rnk we use the reordering operator: P ? A is defined to be the tensor that results from
renumbering the nodes V according to the permutation defined by P . Invariance now reads as f(P ? A) =
f(A); while equivariance means f(P ? A) = P ? f(A). Note that the latter equivariance definition also
holds for functions between different order tensors, f : Rnk

! Rnl .
Following the standard paradigm of neural-networks where a network f is defined by alternating compo-
sitions of linear layers and non-linear activations, we set as a goal to characterize all linear invariant and
equivariant layers. The case of node-value input A = a 2 Rn was treated in the pioneering works of [264,
197]. These works characterize all linear permutation invariant and equivariant operators acting on node-
value (i.e., first order) tensors, Rn. In particular it it shown that the linear space of invariant linear operators
L : Rn

! R is of dimension one, containing essentially only the sum operator, L(a) = ↵1Ta. The space
of equivariant linear operators L : Rn

! Rn is of dimension two, L(a) =
⇥
↵I + �(11T � I)

⇤
a.

The general equivariant tensor case was partially treated in [132] where the authors make the observation
that the set of standard tensor operators: product, element-wise product, summation, and contraction are all
equivariant, and due to linearity the same applies to their linear combinations. However, these do not exhaust
nor provide a full and complete basis for all possible tensor equivariant linear layers. In this section we pro-
vide a full characterization of permutation invariant and equivariant linear layers for general tensor input and
output data. We show that the space of invariant linear layers L : Rnk

! R is of dimension b(k), where b(k)
2A hyper-edge is an ordered subset of the nodes, V

47

Doctoral Dissertation Haggai Maron August 2019

Figure 28: The full basis for equivariant linear layers for edge-value data A 2 Rn⇥n, for n = 5. The purely linear 15
basis elements, Bu, are represented by matrices n2

⇥n2, and the 2 bias basis elements (right), C�, by matrices n⇥n,
see (44).

is the k-th Bell number. The k-th Bell number is the number of possible partitions of a set of size k; see inset
for the case k = 3. Furthermore, the space of equivariant linear layers L : Rnk

! Rnl is of dimension b(k+
l). Remarkably, this dimension is independent of the size n of the node set V . This allows applying the same
network on graphs of different sizes. For both types of layers we provide a general formula for an orthogonal
basis that can be readily used to build linear invariant or equivariant layers with maximal expressive power.

Going back to the example of a graph represented by an adjacency matrix A 2

Rn⇥n we have k = 2 and the linear invariant layers L : Rn⇥n
! R have dimension

b(2) = 2, while linear equivariant layers L : Rn⇥n
! Rn⇥n have dimension

b(4) = 15. Figure 28 shows visualization of the basis to the linear equivariant
layers acting on edge-value data such as adjacency matrices.
In [104] the authors provide an impressive generalization of the case of node-value data to several node
sets, V1, V2, . . . , Vm of sizes n1, n2, . . . , nm. Their goal is to learn interactions across sets. That is, an input
data point is a tensor A 2 Rn1⇥n2⇥···⇥nm that assigns a value to each element in the cartesian product
V1⇥V2⇥ · · ·⇥Vm. Renumbering the nodes in each node set using permutation matrices P1, . . . , Pm (resp.)
results in a new tensor we denote by P1:m ? A. Order invariance means f(P1:m ? A) = f(A) and order
equivariance is f(P1:m?A) = P1:m?f(A). [104] introduce bases for linear invariant and equivariant layers.
Although the layers in [104] satisfy the order invariance and equivariance, they do not exhaust all possible
such layers in case some node sets coincide. For example, if V1 = V2 they have 4 independent learnable
parameters where our model has the maximal number of 15 parameters.
Our analysis allows generalizing the multi-node set case to arbitrary tensor data over V1 ⇥ V2 ⇥ · · · ⇥ Vm.
Namely, for data points in the form of a tensor A 2 Rn

k1
1 ⇥n

k2
2 ⇥···⇥nkm

m . The tensor A attaches a value to
every element of the Cartesian product V k1

1 ⇥ · · ·⇥ V k2
2 , that is, k1-tuple from V1, k2-tuple from V2 and so

forth. We show that the linear space of invariant linear layers L : Rn
k1
1 ⇥n

k2
2 ⇥···⇥nkm

m ! R is of dimensionQ
m

i=1 b(ki), while the equivariant linear layers L : Rn
k1
1 ⇥n

k2
2 ⇥···⇥nkm

m ! Rn
l1
1 ⇥n

l2
2 ⇥···⇥nlm

m has dimensionQ
m

i=1 b(ki + li). We also provide orthogonal bases for these spaces. Note that, for clarity, the discussion
above disregards biases and features; we detail these later on.
In Section 7.8 we show that our model is capable of approximating any message-passing neural network as
defined in [89] which encapsulate several popular graph learning models. One immediate corollary is that
the universal approximation power of our model is not lower than message passing neural nets.
In the experimental part of the section we concentrated on possibly the most popular instantiation of graph
learning, namely that of a single node set and edge-value data, e.g., with adjacency matrices. We created
simple networks by composing our invariant or equivariant linear layers in standard ways and tested the
networks in learning invariant and equivariant graph functions: (i) We compared identical networks with
our basis and the basis of [104] and showed we can learn graph functions like trace, diagonal, and maximal
singular vector. The basis in [104], tailored to the multi-set setting, cannot learn these functions demonstrat-
ing it is not maximal in the graph-learning (i.e., multi-set with repetitions) scenario. We also demonstrate
our representation allows extrapolation: learning on one size graphs and testing on another size; (ii) We also
tested our networks on a collection of graph learning datasets, achieving results that are comparable to the

48

Doctoral Dissertation Haggai Maron August 2019

state-of-the-art in 3 social network datasets.

7.2 Previous work

Our work builds on two main sub-fields of deep learning: group invariant or equivariant networks, and deep
learning on graphs. Here we briefly review the relevant works.

Invariance and equivariance in deep learning. In many learning tasks the functions that we want to learn
are invariant or equivariant to certain symmetries of the input object description. Maybe the first example is
the celebrated translation invariance of Convolutional Neural Networks (CNNs) [141, 136]; in this case, the
image label is invariant to a translation of the input image. In recent years this idea was generalized to other
types of symmetries such as rotational symmetries [54, 52, 246, 53]. [54] introduced Group Equivariant
Neural Networks that use a generalization of the convolution operator to groups of rotations and reflections;
[246, 53] also considered rotational symmetries but in the case of 3D shapes and spherical functions. [203]
showed that any equivariant layer is equivalent to a certain parameter sharing scheme. If we adopt this
point of view, our work reveals the structure of the parameter sharing in the case of graphs and hyper-
graphs. In another work, [131] show that a neural network layer is equivariant to the action of some compact
group iff it implements a generalized form of the convolution operator. [259] suggested certain group
invariant/equivariant models and proved their universality. To the best of our knowledge these models were
not implemented.

Learning of graphs. Learning of graphs is of huge interest in machine learning and we restrict our at-
tention to recent advancements in deep learning on graphs. [93, 213] introduced Graph Neural Networks
(GNN): GNNs hold a state (a real valued vector) for each node in the graph, and propagate these states
according to the graph structure and learned parametric functions. This idea was further developed in [146]
that use gated recurrent units. Following the success of CNNs, numerous works suggested ways to define
convolution operator on graphs. One promising approach is to define convolution by imitating its spectral
properties using the Laplacian operator to define generalized Fourier basis on graphs [42]. Multiple follow-
up works [108, 64, 128, 144] suggest more efficient and spatially localized filters. The main drawback of
spectral approaches is that the generalized Fourier basis is graph-dependent and applying the same network
to different graphs can be challenging. Another popular way to generalize the convolution operator to graphs
is learning stationary functions that operate on neighbors of each node and update its current state [13, 69,
102, 181, 236, 172, 221]. This idea generalizes the locality and weight sharing properties of the standard
convolution operators on regular grids. As shown in the important work of [89], most of the the above men-
tioned methods (including the spectral methods) can be seen as instances of the general class of Message
Passing Neural Networks.

7.3 Linear invariant and equivariant layers

In this section we characterize the collection of linear invariant and equivariant layers. We start with the
case of a single node set V of size n and edge-value data, that is order 2 tensors A = A 2 Rn⇥n. As a
typical example imagine, as above, an adjacency matrix of a graph. We set a bit of notation. Given a matrix
X 2 Ra⇥b we denote vec(X) 2 Rab⇥1 its column stack, and by brackets the inverse action of reshaping
to a square matrix, namely atvec(X) = X . Let p denote an arbitrary permutation and P its corresponding
permutation matrix.
Let L 2 R1⇥n2 denote the matrix representing a general linear operator L : Rn⇥n

! R in the standard
basis, then L is order invariant iff Lvec(P TAP) = Lvec(A). Using the property of the Kronecker product
that vec(XAY) = Y T

⌦ Xvec(A), we get the equivalent equality LP T
⌦ P Tvec(A) = Lvec(A). Since

49

Doctoral Dissertation Haggai Maron August 2019

the latter equality should hold for every A we get (after transposing both sides of the equation) that order
invariant L is equivalent to the equation

P ⌦ P vec(L) = vec(L) (36)

for every permutation matrix P . Note that we used LT = vec(L).
For equivariant layers we consider a general linear operator L : Rn⇥n

! Rn⇥n and its corresponding
matrix L 2 Rn2⇥n2 . Equivariance of L is now equivalent to atLvec(P TAP) = P TatLvec(A)P . Using the
above property of the Kronecker product again we get LP T

⌦ P Tvec(A) = P T
⌦ P TLvec(A). Noting

that P T
⌦ P T is an n2

⇥ n2 permutation matrix and its inverse is P ⌦ P we get to the equivalent equality
P ⌦ PLP T

⌦ P Tvec(A) = Lvec(A). As before, since this holds for every A and using the properties of
the Kronecker product we get that L is order equivariant iff for all permutation matrices P

P ⌦ P ⌦ P ⌦ P vec(L) = vec(L). (37)

From equations 36 and 37 we see that finding invariant and equivariant linear layers for the order-2 tensor
data over one node set requires finding fixed points of the permutation matrix group represented by Kro-
necker powers P ⌦ P ⌦ · · ·⌦ P of permutation matrices P . As we show next, this is also the general case
for order-k tensor data A 2 Rnk over one node set, V . That is,

invariant L : P⌦kvec(L) = vec(L) (38)

equivariant L : P⌦2kvec(L) = vec(L) (39)

for every permutation matrix P , where P⌦k =

kz }| {
P ⌦ · · ·⌦ P . In (38), L 2 R1⇥nk is the matrix of an

invariant operator; and in (39), L 2 Rnk⇥nk is the matrix of an equivariant operator. We call equations 38,39
the fixed-point equations.
To see this, let us add a bit of notation first. Let p denote the permutation corresponding to the permutation
matrix P . We let P ? A denote the tensor that results from expressing the tensor A after renumbering the
nodes in V according to permutation P . Explicitly, the (p(i1), p(i2), . . . , p(ik))-th entry of P ?A equals the
(i1, i2, . . . , ik)-th entry of A. The matrix that corresponds to the operator P? in the standard tensor basis
e(i1) ⌦ · · · ⌦ e(ik) is the Kronecker power P T⌦k = (P T)⌦k. Note that vec(A) is exactly the coordinate
vector of the tensor A in this standard basis and therefore we have vec(P ? A) = P T⌦kvec(A). We now
show:

Proposition 2. A linear layer is invariant (equivariant) if and only if its coefficient matrix satisfies the
fixed-point equations, namely (38) ((39)).
Proof. Similarly to the argument from the order-2 case, let L 2 R1⇥nk denote the matrix corresponding to a
general linear operator L : Rnk

! R. Order invariance means

Lvec(P ?A) = Lvec(A). (40)

Using the matrix P T⌦k we have equivalently LP T⌦kvec(A) = Lvec(A) which is in turn equivalent to
P⌦kvec(L) = vec(L) for all permutation matrices P . For order equivariance, let L 2 Rnk⇥nk denote the
matrix of a general linear operator L : Rnk

! Rnk . Now equivariance of L is equivalent to

[Lvec(P ?A)] = P ? [Lvec(A)]. (41)

Similarly to above this is equivalent to LP T⌦kvec(A) = P T⌦kLvec(A) which in turn leads to P⌦kLP T⌦k =
L, and using the Kronecker product properties we get P⌦2kvec(L) = vec(L).

50

Doctoral Dissertation Haggai Maron August 2019

7.3.1 Solving the fixed-point equations

We have reduced the problem of finding all invariant and equivariant linear operators L to finding all so-
lutions L of equations 38 and 39. Although the fixed point equations consist of an exponential number of
equations with only a polynomial number of unknowns they actually possess a solution space of constant
dimension (i.e., independent of n).
To find the solution of P⌦`vec(X) = vec(X), where X 2 Rn` , note that P⌦`vec(X) = vec(Q ? X),
where Q = P T . As above, the tensor Q ?X is the tensor resulted from renumbering the nodes in V using
permutation Q. Equivalently, the fixed-point equations we need to solve can be formulated as

Q ?X = X, 8Q permutation matrices (42)

The permutation group is acting on tensors X 2 Rn` with the action X 7! Q ?X . We are looking for fixed
points under this action. To that end, let us define an equivalence relation in the index space of tensors Rn` ,
namely in [n]`, where with a slight abuse of notation (we use light brackets) we set [n] = {1, 2, . . . , n}. For
multi-indices a, b 2 [n]` we set a ⇠ b iff a, b have the same equality pattern, that is ai = aj , bi = bj for
all i, j 2 [`].
The equality pattern equivalence relation partitions the index set [n]` into equivalence classes, the collection
of which is denoted [n]`/⇠. Each equivalence class can be represented by a unique partition of the set [`]
where each set in the partition indicates maximal set of identical values. Let us exemplify. For ` = 2 we
have two equivalence classes �1 = {{1} , {2}} and �2 = {{1, 2}}; �1 represents all multi-indices (i, j)
where i 6= j, while �2 represents all multi-indices (i, j) where i = j. For ` = 4, there are 15 equivalence
classes �1 = {{1} , {2} , {3} , {4}}, �2 = {{1} , {2} , {3, 4}}, �3 = {{1, 2} , {3} , {4}}, . . . ; �3 represents
multi-indices (i1, i2, i3, i4) so that i1 = i2, i2 6= i3, i3 6= i4, i2 6= i4.
For each equivalence class � 2 [n]`/⇠ we define an order-` tensor B�

2 Rn` by setting

B�

a =

(
1 a 2 �

0 otherwise
(43)

Since we have a tensor B� for every equivalence class �, and the equivalence classes are in one-to-one
correspondence with partitions of the set [`] we have b(`) tensors B� . (Remember that b(`) denotes the `-th
Bell number.) We next prove:

Proposition 3. The tensors B� in (43) form an orthogonal basis (in the standard inner-product) to the
solution set of equations 42. The dimension of the solution set is therefore b(`).

Proof. Let us first show that: X is a solution to (42) iff X is constant on equivalence classes of the
equality pattern relation, ⇠. Since permutation q : [n] ! [n] is a bijection the equality patterns of
a = (i1, i2, . . . , i`) 2 [n]` and q(a) = (q(i1), q(i2), . . . , q(i`)) 2 [n]` are identical, i.e., a ⇠ q(a). Taking
the a 2 [n]` entry of both sides of (42) gives Xq(a) = Xa. Now, if X is constant on equivalence classes
then in particular it will have the same value at a and q(a) for all a 2 [n]` and permutations q. Therefore
X is a solution to (42). For the only if part, consider a tensor X for which there exist multi-indices a ⇠ b
(with identical equality patterns) and Xa 6= Xb then X is not a solution to (42). Indeed, since a ⇠ b one
can find a permutation q so that b = q(a) and using the equation above, Xb = Xq(a) = Xa which leads to a
contradiction.
To finish the proof note that any tensor X , constant on equivalence classes, can be written as a linear com-
bination of B� , which are merely indicators of the equivalence class. Furthermore, the collection B� have
pairwise disjoint supports and therefore are an orthogonal basis.

51

Doctoral Dissertation Haggai Maron August 2019

Combining propositions 2 and 3 we get the characterization of invariant and equivariant linear layers acting
on general k-order tensor data over a single node set V :

Theorem 3. The space of invariant (equivariant) linear layers Rnk
! R (Rnk

! Rnk) is of dimension b(k)
(b(2k)) with basis elements B� defined in (43), where � are equivalence classes in [n]k/⇠ ([n]2k/⇠).

Biases Theorem 3 deals with purely linear layers, that is without bias, i.e., without constant part. Neverthe-
less extending the previous analysis to constant layers is straight-forward. First, any constant layer Rnk

! R
is also invariant so all constant invariant layers are represented by constants c 2 R. For equivariant layers
L : Rnk

! Rnk we note that equivariance means C = L(P ? A) = P ? L(A) = P ? C. Representing this
equation in matrix form we get P T⌦kvec(C) = vec(C). This shows that constant equivariant layers on one
node set acting on general k-order tensors are also characterized by the fixed-point equations, and in fact
have the same form and dimensionality as invariant layers on k-order tensors, see (38). Specifically, their
basis is B�, � 2 [n]k/⇠. For example, for k = 2, the biases are shown on the right in figure 28.

Features. It is pretty common that input tensors have vector values (i.e., features) attached to each hyper-
edge (k-tuple of nodes) in V , that is A 2 Rnk⇥d. Now linear invariant Rnk⇥d

! R1⇥d0 or equivariant
Rnk⇥d

! Rnk⇥d0 layers can be formulated using a slight generalization of the previous analysis. The
operator P ?A is defined to act only on the nodal indices, i.e., i1, . . . , ik (the first k indices). Explicitly, the
(p(i1), p(i2), . . . , p(ik), ik+1)-th entry of P ?A equals the (i1, i2, . . . , ik, ik+1)-th entry of A.
Invariance is now formulated exactly as before, (40), namely Lvec(P ? A) = Lvec(A). The matrix that
corresponds to P? acting on Rnk⇥d in the standard basis is P T⌦k

⌦Id and therefore L(P T⌦k
⌦Id)vec(A) =

Lvec(A). Since this is true for all A we have (P⌦k
⌦ Id⌦ Id0) vec(L) = vec(L), using the properties of the

Kronecker product. Equivariance is written as in (41), [Lvec(P ?A)] = P ? [Lvec(A)]. In matrix form, the
equivariance equation becomes L(P T⌦k

⌦ Id)vec(A) = (P T⌦k
⌦ Id0)Lvec(A), since this is true for all A

and using the properties of the Kronecker product again we get to P⌦k
⌦ Id⌦P⌦k

⌦ Id0 vec(L) = vec(L).
The basis (with biases) to the solution space of these fixed-point equations is defined as follows. We use
a, b 2 [n]k, i, j 2 [d], i0, j0 2 [d0], � 2 [n]k/⇠, µ 2 [n]2k/⇠.

invariant: B�,j,j
0

a,i,i0 =

(
1 a2�, i=j, i

0=j
0

0 otherwise
; Cj

0

i0 =

(
1 i

0=j
0

0 otherwise
(44a)

equivariant: Bµ,j,j
0

a,i,b,i0 =

(
1 (a,b)2µ, i=j, i

0=j
0

0 otherwise
; C�,j

0

b,i0 =

(
1 b2�, i

0=j
0

0 otherwise
(44b)

Note that these basis elements are similar to the ones in (43) with the difference that we have different basis
tensor for each pair of input j and output j0 feature channels.
An invariant ((45a))/ equivariant ((45b)) linear layer L including the biases can be written as follows for
input A 2 Rnk⇥d:

L(A)i0 =
X

a,i

Ta,i,i0Aa,i + Yi0 ; T =
X

�,j,j0

w�,j,j0B
�,j,j

0
;Y =

X

j0

bj0C
j
0

(45a)

L(A)b,i0 =
X

a,i

Ta,i,b,i0Aa,i + Yb,i0 ; T =
X

µ,j,j0

wµ,j,j0B
µ,j,j

0
;Y =

X

�,j0

b�,j0C
�,j

0
(45b)

where the learnable parameters are w 2 Rb(k)⇥d⇥d0 and b 2 Rd0 for a single linear invariant layer Rnk⇥d
!

Rd0 ; and it is w 2 Rb(2k)⇥d⇥d0 and b 2 Rb(k)⇥d0 for a single linear equivariant layer Rnk⇥d
! Rnk⇥d0 . The

natural generalization of theorem 3 to include bias and features is therefore:

52

Doctoral Dissertation Haggai Maron August 2019

Theorem 4. The space of invariant (equivariant) linear layers Rnk,d
! Rd0 (Rnk⇥d

! Rnk⇥d0) is of
dimension dd0b(k) + d0 (for equivariant: dd0b(2k) + d0b(k)) with basis elements defined in (44); equation
45a (45b) show the general form of such layers.

Since, by similar arguments to proposition 3, the purely linear parts B and biases C in (44) are independent
solutions to the relevant fixed-point equations, theorem 4 will be proved if their number equals the dimension
of the solution space of these fixed-point equations, namely dd0b(k) for purely linear part and d0 for bias
in the invariant case, and dd0b(2k) for purely linear and d0b(k) for bias in the equivariant case. This can
be shown by repeating the arguments of the proof of proposition 3 slightly adapted to this case, or by a
combinatorial identity we show in Section 7.7 .
For example, figure 28 depicts the 15 basis elements for linear equivariant layers Rn⇥n

! Rn⇥n taking as
input edge-value (order-2) tensor data A 2 Rn⇥n and outputting the same dimension tensor. The basis for
the purely linear part are shown as n2

⇥ n2 matrices while the bias part as n ⇥ n matrices (far right); the
size of the node set is |V | = n = 5.

Mixed order equivariant layers. Another useful generalization of order equivariant linear layers is to lin-
ear layers between different order tensor layers, that is, L : Rnk

! Rnl , where l 6= k. For example, one can
think of a layer mapping an adjacency matrix to per-node features. For simplicity we will discuss the purely
linear scalar-valued case, however generalization to include bias and/or general feature vectors can be done
as discussed above. Consider the matrix L 2 Rnl⇥nk representing the linear layer L, using the renumbering
operator, P?, order equivariance is equivalent to [Lvec(P ? A)] = P ? [Lvec(A)]. Note that while this
equation looks identical to (41) it is nevertheless different in the sense that the P? operator in the l.h.s. of
this equation acts on k-order tensors while the one on the r.h.s. acts on l-order tensor. Still, we can transform
this equation to a matrix equation as before by remembering that P T⌦k is the matrix representation of the
renumbering operator P? acting on k-tensors in the standard basis. Therefore, repeating the arguments in
proof of proposition 2, equivariance is equivalent to P⌦(k+l)vec(L) = vec(L), for all permutation matrices
P . This equation is solved as in subseection 7.3.1. The corresponding bases to such equivariant layers are
computed as in (44b), with the only difference that now a 2 [n]k, b 2 [n]l, and µ 2 [n]k+l/⇠.

7.4 Experiments
Implementation details. We implemented our method in Tensorflow [1]. The equivariant linear basis was
implemented efficiently using basic row/column/diagonal summation operators, see Section 7.6 for details.
The networks we used are composition of 1�4 equivariant linear layers with ReLU activation between them
for the equivariant function setting. For invariant function setting we further added a max over the invariant
basis and 1� 3 fully-connected layers with ReLU activations.

Table 8: Comparison to baseline methods on synthetic experiments.

Symmetric projection Diagonal extraction Max singular vector Trace

Layers 1 2 3 1 2 3 1 2 3 4 1 2 3

Trivial predictor 4.17 4.17 4.17 0.21 0.21 0.21 0.025 0.025 0.025 0.025 333.33 333.33 333.33
Hartford et al. 2.09 2.09 2.09 0.81 0.81 0.81 0.043 0.044 0.043 0.043 316.22 311.55 307.97

Ours 1E-05 7E-06 2E-05 8E-06 7E-06 1E-04 0.015 0.0084 0.0054 0.0016 0.005 0.001 0.003

Synthetic datasets. We tested our method on several synthetic equivariant and invariant graph functions
that highlight the differences in expressivity between our linear basis and the basis of [104]. Given an input
matrix data A 2 Rn⇥n we considered: (i) projection onto the symmetric matrices 1

2(A+AT); (ii) diagonal

53

Doctoral Dissertation Haggai Maron August 2019

extraction diag(diag(A)) (keeps only the diagonal and plugs zeros elsewhere); (iii) computing the maximal
right singular vector argmaxkvk2=1 kAvk2; and (iv) computing the trace tr(A). Tasks (i)-(iii) are equivariant
while task (iv) is invariant. We created accordingly 4 datasets with 10K train and 1K test examples of
40 ⇥ 40 matrices; for tasks (i), (ii), (iv) we used i.i.d. random matrices with uniform distribution in [0, 10];
we used mean-squared error (MSE) as loss; for task (iii) we random matrices with uniform distribution of
singular values in [0, 0.5] and spectral gap � 0.5; due to sign ambiguity in this task we used cosine loss of
the form l(x, y) = 1� hx/ kxk , y/ kyki2.
We trained networks with 1, 2, and 3 hidden layers with 8 feature channels each and a single fully-connected
layer. Both our models as well as [104] use the same architecture but with different bases for the linear
layers. Table 8 logs the best mean-square error of each method over a set of hyper-parameters. We add the
MSE for the trivial mean predictor.

Table 9: Generalization.

30 40 50

sym 0.0053 3.8E-05 0.0013
svd 0.0108 0.0084 0.0096
diag 0.0150 1.5E-05 0.0055

This experiment emphasizes simple cases in which the additional parameters
in our model, with respect to [104], are needed. We note that [104] target a
different scenario where the permutations acting on the rows and columns of
the input matrix are not necessarily the same. The assumption taken in section,
namely, that the same permutation acts on both rows and columns, gives rise to
additional parameters that are associated with the diagonal and with the trans-
pose of the matrix (for a complete list of layers for the k = 2 case see section 7.6). In case of an input
matrix that represents graphs, these parameters can be understood as parameters that control self-edges or
node features, and incoming/outgoing edges in a different way. Table 9 shows the result of applying the
learned equivariant networks from the above experiment to graphs (matrices) of unseen sizes of n = 30
and n = 50. Note, that although the network was trained on a fixed size, the network provides plausible
generalization to different size graphs. We note that the generalization of the invariant task of computing the
trace did not generalize well to unseen sizes and probably requires training on different sizes as was done in
the datasets below.

Table 10: Graph Classification Results.

dataset MUTAG PTC PROTEINS NCI1 NCI109 COLLAB IMDB-B IMDB-M

size 188 344 1113 4110 4127 5000 1000 1500
classes 2 2 2 2 2 3 2 3
avg node # 17.9 25.5 39.1 29.8 29.6 74.4 19.7 13

Results

DGCNN 85.83±1.7 58.59±2.5 75.54±0.9 74.44±0.5 NA 73.76±0.5 70.03±0.9 47.83±0.9
PSCN (k=10) 88.95±4.4 62.29±5.7 75±2.5 76.34±1.7 NA 72.6±2.2 71±2.3 45.23±2.8
DCNN NA NA 61.29±1.6 56.61± 1.0 NA 52.11±0.7 49.06±1.4 33.49±1.4
ECC 76.11 NA NA 76.82 75.03 NA NA NA
DGK 87.44±2.7 60.08±2.6 75.68±0.5 80.31±0.5 80.32±0.3 73.09±0.3 66.96±0.6 44.55±0.5
DiffPool NA NA 78.1 NA NA 75.5 NA NA
CCN 91.64±7.2 70.62±7.0 NA 76.27±4.1 75.54±3.4 NA NA NA
GK 81.39±1.7 55.65±0.5 71.39±0.3 62.49±0.3 62.35±0.3 NA NA NA
RW 79.17±2.1 55.91±0.3 59.57±0.1 > 3 days NA NA NA NA
PK 76±2.7 59.5±2.4 73.68±0.7 82.54±0.5 NA NA NA NA
WL 84.11±1.9 57.97±2.5 74.68±0.5 84.46±0.5 85.12±0.3 NA NA NA
FGSD 92.12 62.80 73.42 79.80 78.84 80.02 73.62 52.41
AWE-DD NA NA NA NA NA 73.93±1.9 74.45 ±5.8 51.54 ±3.6
AWE-FB 87.87±9.7 NA NA NA NA 70.99 ± 1.4 73.13 ±3.2 51.58 ± 4.6

ours 84.61±10 59.47±7.3 75.19±4.3 73.71±2.6 72.48±2.5 77.92±1.7 71.27±4.5 48.55±3.9

Graph classification. We tested our method on standard benchmarks of graph classification. We use 8
different real world datasets from the benchmark of [257]: five of these datasets originate from bioinformat-

54

Doctoral Dissertation Haggai Maron August 2019

ics while the other three come from social networks. In all datasets the adjacency matrix of each graph is
used as input and a categorial label is assigned as output. In the bioinformatics datasets node labels are also
provided as inputs. These node labels can be used in our framework by placing their 1-hot representations
on the diagonal of the input.
Table 10 specifies the results for our method compared to state-of-the-art deep and non-deep graph learning
methods. We follow the evaluation protocol including the 10-fold splits of [268]. For each dataset we
selected learning and decay rates on one random fold. In all experiments we used a fixed simple architecture
of 3 layers with (16, 32, 256) features accordingly. The last equivariant layer is followed by an invariant
max layer according to the invariant basis. We then add two fully-connected hidden layers with (512, 256)
features.
We compared our results to seven deep learning methods: DGCNN [268], PSCN [181], DCNN [13], ECC
[221], DGK [257], DiffPool [262] and CCN [132]. We also compare our results to four popular graph
kernel methods: Graphlet Kernel (GK) [218],Random Walk Kernel (RW) [239], Propagation Kernel (PK)
[179], and Weisfeiler-lehman kernels (WL) [219] and two recent feature-based methods: Family of Graph
Spectral Distance (FGSD) [237] and Anonymous Walk Embeddings (AWE) [115]. Our method achieved
results comparable to the state-of-the-art on the three social networks datasets, and slightly worse results
than state-of-the-art on the biological datasets.

7.5 Generalizations to multi-node sets
Lastly, we provide a generalization of our framework to data that is given on tuples of nodes from a collection
of node sets V1, V2, . . . , Vm of sizes n1, n2, . . . , nm (resp.), namely A 2 Rn

k1
1 ⇥n

k2
2 ⇥···⇥nkm

m . We characterize
invariant linear layers L : Rn

k1
1 ⇥···⇥nkm

m ! R and equivariant linear layer L : Rn
k1
1 ⇥···⇥nkm

m ! Rn
l1
1 ⇥···⇥nlm

m ,
where for simplicity we do not discuss features that can be readily added as discussed in subseection 7.3.
Note that the case of ki = li = 1 for all i = 1, . . . ,m is treated in [104]. The reordering operator now is built
out of permutation matrices Pi 2 Rni⇥ni (pi denotes the permutation), i = 1, . . . ,m, denoted P1:m?, and
defined as follows: the (p1(a1), p2(a2), . . . , pm(am))-th entry of the tensor P1:m ? A, where ai 2 [ni]ki is
defined to be the (a1, a2, . . . , am)-th entry of the tensor A. Rewriting the invariant and equivariant equations,
i.e., (40), 41, in matrix format, similarly to before, we get the fixed-point equations: Mvec(L) = vec(L)
for invariant, and M ⌦Mvec(L) = vec(L) for equivariant, where M = P⌦k1

1 ⌦ · · ·⌦ P⌦km
m . The solution

of these equations would be linear combinations of basis tensor similar to (44) of the form

invariant: B�1,...,�m
a1,...,am

=

(
1 ai2�i, 8i

0 otherwise
; equivariant: Bµ1,...,µm

a1,...,am,b1,...,bm
=

(
1 (ai,bi)2µi, 8i

0 otherwise
(46)

where �i 2 [ni]ki , µi 2 [ni]ki+li , a 2 [ni]ki , bi 2 [ni]li . The number of these tensors is
Q

m

i=1 b(i) for
invariant layers and

Q
m

i=1 b(ki + li) for equivariant layers. Since these are all linear independent (pairwise
disjoint support of non-zero entries) we need to show that their number equal the dimension of the solution
of the relevant fixed-point equations above. This can be done again by similar arguments to the proof of
proposition 3 or as shown in section 7.7. To summarize:

Theorem 5. The linear space of invariant linear layers L : Rn
k1
1 ⇥n

k2
2 ⇥···⇥nkm

m ! R is of dimensionQ
m

i=1 b(ki). The equivariant linear layers L : Rn
k1
1 ⇥n

k2
2 ⇥···⇥nkm

m ! Rn
l1
1 ⇥n

l2
2 ⇥···⇥nlm

m has dimension
Q

m

i=1 b(ki+
li). Orthogonal bases for these layers are listed in (46).

55

Doctoral Dissertation Haggai Maron August 2019

7.6 Efficient implementation of layers

For fast execution of order-2 layers we implemented the following 15 operations which can be easily shown
to span the basis discussed in the section. We denote by 1 2 Rn the vector of all ones.

1. The identity and transpose operations: L(A) = A, L(A) = AT .

2. The diag operation: L(A) = diag(diag(A)).

3. Sum of rows replicated on rows/ columns/ diagonal: L(A) = A11T , L(A) = 1(A1)T , L(A) =
diag(A1).

4. Sum of columns replicated on rows/ columns/ diagonal: L(A) = AT11T , L(A) = 1(AT1)T ,
L(A) = diag(AT1).

5. Sum of all elements replicated on all matrix/ diagonal: L(A) = (1TA1) · 11T , L(A) = (1TA1) ·
diag(1).

6. Sum of diagonal elements replicated on all matrix/diagonal: L(A) = (1T diag(A)) · 11T , L(A) =
(1T diag(A)) · diag(1).

7. Replicate diagonal elements on rows/columns: L(A) = diag(A)1T , L(A) = 1diag(A)T .

We normalize each operation to have unit max operator norm. We note that in case the input matrix is
symmetric, our basis reduces to 11 elements in the first layer. If we further assume the matrix has zero
diagonal we get a 6 element basis in the first layer. In both cases our model is more expressive than the 4
element basis of [104] and as the output of the first layer (or other inner states) need not be symmetric nor
have zero diagonal the deeper layers can potentially make good use of the full 15 element basis.

7.7 Invariant and equivariant subspace dimensions

We prove a useful combinatorial fact as a corollary of proposition 3. This fact will be used later to easily
compute the dimensions of more general spaces of invariant and equivariant linear layers. We use the fact
that if V is a representation of a finite group G then

� =
1

|G|

X

g2G
g 2 End(V) (47)

is a projection onto V G = {v 2 V | gv = v, 8g 2 G}, the subspace of fixed points in V under the action of
G, and consequently that tr(�) = dim(V G) (see [84] for simple proofs).

Proposition 4. The following formula holds:

1

n!

X

P2⇧n

tr(P)k = b(k),

where ⇧n is the matrix permutation group of dimensions n⇥ n.

Proof. In our case, the vector space is the space of order-k tensors and the group acting on it is the matrix
group G =

�
P⌦k

| P 2 ⇧m

.

dim(V G) = tr(�) =
1

|G|

X

g2G
tr(g) =

1

n!

X

P2⇧n

tr(P⌦k) =
1

n!

X

P2⇧n

tr(P)k,

56

Doctoral Dissertation Haggai Maron August 2019

where we used the multiplicative law of the trace with respect to Kronecker product. Now we use proposition
3 noting that in this case V G is the solution space of the fixed-point equations. Therefore, dim(V G) = b(k)
and the proof is finished.

Recall that for a permutation matrix P , tr(P) = | {i 2 [n] s.t. P fixes ei } |. Using this, we can interpret
the equation in proposition 4 as the k-th moment of a random variable counting the number of fixed points
of a permutation, with uniform distribution over the permutation group. Proposition 4 proves that the k-th
moment of this random variable is the k-th Bell number.
We can now use proposition 4 to calculate the dimensions of two linear layer spaces: (i) Equivariant layers
acting on order-k tensors with features (as in 7.3); and (ii) multi-node sets (as in subseection 7.5).

Theorem 4. The space of invariant (equivariant) linear layers Rnk,d
! Rd0 (Rnk⇥d

! Rnk⇥d0) is of
dimension dd0b(k)+ d0 (for equivariant: dd0b(2k)+ d0b(k)) with basis elements defined in (44); equations
45a (45b) show the general form of such layers.

Proof. We prove the dimension formulas for the invariant case. The equivariant case is proved similarly. The
solution space for the fixed point equations is the set V G for the matrix group G =

�
P⌦k

⌦ Id ⌦ Id0 | P 2 ⇧n

.

Using the projection formula 47 we get that the dimension of the solution subspace, which is the space of
invariant linear layers, can be computed as follows:

dim(V G) =
1

n!

X

P2⇧n

tr(P)k tr(Id)tr(Id0) =

1

n!

X

P2⇧n

tr(P)k
!

tr(Id) tr(Id0) = d · d0 · b(k).

Theorem 5. The linear space of invariant linear layers L : Rn
k1
1 ⇥n

k2
2 ⇥···⇥nkm

m ! R is of dimensionQ
m

i=1 b(ki). The equivariant linear layers L : Rn
k1
1 ⇥n

k2
2 ⇥···⇥nkm

m ! Rn
l1
1 ⇥n

l2
2 ⇥···⇥nlm

m has dimension
Q

m

i=1 b(ki+
li). Orthogonal bases for these layers are listed in (46).

Proof. In this case we get the fixed-point equations: Mvec(L) = vec(L) for invariant, and M⌦Mvec(L) =
vec(L) for equivariant, where M = P⌦k1

1 ⌦ · · · ⌦ P⌦km
m . Similarly to the previous theorem, plugging M

into (47), using the trace multiplication rule and proposition 4 we get the above formulas.

7.8 Implementing message passing with our model

In this section we show that our model can approximate message passing layers as defined in [89] to an
arbitrary precision, and consequently that our model is able to approximate any network consisting of several
such layers. The key idea is to mimic multiplication of features by the adjacency matrix, which allows
summing over local neighborhoods. This can be implemented using our basis.

Theorem 6. Our model can represent message passing layers to an arbitrary precision on compact sets.

Proof. Consider input vertex data H = (hu) 2 R
n⇥d (n is the number of vertices in the graph, and d is

the input feature depth), adjacency matrix A = (auv) 2 R
n⇥n of the graph, and additional edge features

E = (euv) 2 R
n⇥n⇥l. Recall that a message passing layer of [89] is of the form:

mt+1
u =

X

v2N(u)

Mt(h
t

u, h
t

v, euv) (48a)

ht+1
u = Ut(h

t

u,m
t+1
u) (48b)

57

Doctoral Dissertation Haggai Maron August 2019

where u, v are nodes in the graph, htu is the feature vector associated with u in layer t, and euv are additional
edge features. We denote the number of output features of Mt by d0.
In our setting we represent this data using a tensor Y 2 R

n⇥n⇥(1+l+d) where the first channel is the
adjacency matrix A, the next l channels are edge features, and the last d channels are diagonal matrices that
hold X .
Let us construct a message passing layer using our model:

1. Our first step is constructing an n⇥n⇥ (1+ l+2d) tensor. In the first channels we put the adjacency
matrix A and the edge features E. In the next d channels we replicate the features on the rows,
and in the last d channels we replicate features on the columns. The output tensor Z1 has the form
Z1
u,v = [auv, euv, htu, h

t
v].

2. Next, we copy the feature channels [auv, euv, htu] to the output tensor Z2. We then apply a multilayer
perceptron (MLP) on the last l+2d feature dimensions of Z1 that approximates Mt [110]. The output
tensor of this stage is Z2

u,v = [auv, euv, htu,Mt(htu, h
t
v, euv) + ✏1].

3. Next, we would like to perform point-wise multiplication Z2
u,v,1 � Z2

u,v,(l+d+2):end. This step would
zero out the outputs of Mt for non-adjacent nodes u, v. As this point-wise multiplication is not
a part of our framework we can use an MLP on the feature dimension to approximate it and get
Z3
u,v = [auv, euv, htu, auvMt(htu, h

t
v) + ✏2].

4. As before we copy the feature channels [auv, euv, htu]. We now apply a sum over the rows (v dimen-
sion) on the Mt output channels. We put the output of this sum on the diagonal of Z4 in separate
channels. We get Z4

u,v = [auv, euv, htu, �uv
P

w2N(u)Mt(htu, h
t
w) + ✏3], where �uv is the Kronecker

delta. We get a tensor Z4
2 Rn⇥n⇥(1+l+d+d

0).

5. The last step is to apply an MLP to the last d + d0 feature channels of the diagonal of Z4. After this
last step we have Z5

u,v = [auv, euv, �uvUt(htu,m
t+1
u) + ✏4].

The errors ✏i depend on the approximation error of the MLP to the relevant function, the previous errors
✏i�1 (for i > 1), and uniform bounds as-well as uniform continuity of the approximated functions.

Corollary 1. Our model can represent any message passing network to an arbitrary precision on compact
sets. In other words, in terms of universality our model is at-least as powerful as any message passing
neural network (MPNN) that falls into the framework of [89].

58

Doctoral Dissertation Haggai Maron August 2019

8 Universality of invariant networks

This section is based on [159].

8.1 Introduction

The basic paradigm of deep neural networks is repeatedly composing ”layers” of linear functions with non-
linear, entrywise activation functions to create effective predictive models for learning tasks of interest.
When trying to learn a function (task) f that is known to be invariant to some group of symmetries G (i.e.,
G-invariant function) it is common to use linear layers that respect this symmetry, namely, invariant and/or
equivariant linear layers. Networks with invariant/equivariant linear layers with respect to some group G
will be referred here as G-invariant networks.
A fundamental question in learning theory is that of approximation or universality [59, 110]. In the invariant
case: Can a G-invariant network approximate an arbitrary continuous G-invariant function?
The goal of this section is to address this question for all finite permutation groups G Sn, where Sn is the
symmetric group acting on [n] = {1, 2, . . . , n}. Note that this is a fairly general setting that contains many
useful examples (detailed below).
The archetypal example of G-invariant networks is Convolutional Neural Networks (CNNs) [141, 136]
that restrict their linear layers to convolutions in order to learn image tasks that are translation invariant or
equivariant 3.
In recent years researchers are considering other types of data and/or symmetries and consequently new
G-invariant networks have emerged. Tasks involving point clouds or sets are in general invariant to the
order of the input and therefore permutation invariance/equivariance was developed [197, 264]. Learn-
ing tasks involving interaction between different sets, where the input data is tabular, require dealing with
different permutations acting independently on each set [105]. Tasks involving graphs and hyper-graphs
lead to symmetries defined by tensor products of permutations [132, 158]. A general treatment of invari-
ance/equivariance to finite subgroups of the symmetric group is discussed in [203]; infinite symmetries are
discussed in general in [131] as well as in [54, 52, 53, 246].
Among these examples, universality is known for point-clouds networks and sets networks [197, 264], as
well as networks invariant to finite translation groups (e.g., cyclic convolutional neural networks) [259].
However, universality is not known for tabular and multi-set networks [105], graph and hyper-graph net-
works [132, 158]; and networks invariant to finite translations with rotations and/or reflections. We cover
all these cases in this section.
Maybe the most related work to ours is [259] that considered actions of compact groups and suggested
provably universal architectures that are based on polynomial layers. In contrast, we study the standard and
widely used linear layer model.
The section is organized as follows: First, we prove that an arbitrary continuous function f : Rn

! R
invariant to an arbitrary permutation group G Sn can be approximated using a G-invariant network. The
proof is constructive and makes use of linear equivariant layers between tensors X 2 Rn

k of order k d,
where d depends on the permutation group G.
Second, we prove a lower bound on the order d of tensors used in a G-invariant network so to achieve
universality. Specifically, we show that for G = An (the alternating group) any G-invariant network that

3It is common to use convolutional layers without cyclic padding which implies that these networks are not precisely translation
invariant.

59

Doctoral Dissertation Haggai Maron August 2019

Figure 29: Illustration of invariant network architecture. The function is composed of multiple linear G-equivariant
layers (gray), possibly of high order, and ends with a linear G-invariant function (light blue) followed by a Multi Layer
Perceptron (yellow).

uses tensors of order at-most d = (n� 2)/2 cannot approximate arbitrary G-invariant functions.
We conclude the section by considering the question: For which groups G Sn, G-invariant networks
using only first order tensors are universal? We prove a necessary condition, and describe families of groups
for which universality cannot be attained using only first order tensors.

8.2 Preliminaries and main results

The symmetries we consider in this section are arbitrary subgroups of the symmetric group, i.e., G Sn.
The action of G on x 2 Rn used in this section is defined as

g · x = (xg�1(1), . . . , xg�1(n)), g 2 G. (49)

The action of G on tensors X 2 Rn
k⇥a (the last index, denoted j represents feature depth) is defined

similarly by
(g ·X)i1...ik,j = Xg�1(i1)...g�1(ik),j , g 2 G. (50)

The inset illustrates this action on tensors of order k = 1, 2, 3: the permutation
g is a transposition of two numbers and is applied to each dimension of the
tensor.

Definition 1. A G-invariant function is a function f : Rn
! R that satisfies

f(g · x) = f(x) for all x 2 Rn and g 2 G.

Definition 2. A linear equivariant layer is an affine map L : Rn
k⇥a

! Rn
l⇥b satisfying L(g·X) = g·L(X),

for all g 2 G, and X 2 Rn
k⇥a. An invariant linear layer is an affine map h : Rn

k⇥a
! Rb satisfying

h(g ·X) = h(X), for all g 2 G, and X 2 Rn
k⇥a.

A common way to construct G-invariant networks is:

Definition 3. A G-invariant network is a function F : Rn⇥a
! R defined as

F = m � h � Ld � � � · · · � � � L1,

where Li are linear G-equivariant layers, � is an activation function 4, h is a G-invariant layer, and m is a
Multi-Layer Perceptron (MLP).

Figure 29 illustrates the G-invariant network model. By construction, G-invariant networks are G-invariant
functions (note that entrywise activation is equivariant as-well). This framework has been used, with appro-
priate group G, in previous works to build predictive G-invariant models for learning.

4We assume any activation function for which the universal approximation theorem for MLP holds, e.g., ReLU and sigmoid.

60

Doctoral Dissertation Haggai Maron August 2019

Our goal is to show the approximation power of G-invariant networks. Namely, that G-invariant networks
can approximate arbitrary continuous G-invariant functions f . Without loss of generality, we consider only
functions of the form f : Rn

! R. Indeed, in case of multiple features, Rn⇥a, we rearrange the input as
Rn

0 , n0 = na, and take the appropriate G0
 Sn0 . We prove:

Theorem 7. Let f : Rn
! R be a continuous G-invariant function for some G Sn, and K ⇢ R

n a
compact set. There exists a G-invariant network that approximates f to an arbitrary precision.

The proof of Theorem 7 is constructive and builds an f -approximating G-invariant network with hidden
tensors X 2 Rn

d of order d, where d = d(G) is a natural number depending on the group G. Unfortunately,
we show that in the worst case d can be as high as n(n�1)

2 . Note that d = 2 could already be computationally
challenging. It is therefore of interest to ask whether there exist more efficient G-invariant networks that use
lower order tensors without sacrificing approximation power. Surprisingly, the answer is that in general we
can not go lower than order n for general permutation groups G. Specifically, we prove the following for
G = An, the alternating group:

Theorem 8. If an An-invariant network has the universal approximation property then it consists of tensors
of order at least n�2

2 .

Although in general we cannot expect universal approximation of G-invariant networks with inner tensor
order smaller than n�2

2 , it is still possible that for specific groups of interest we can prove approximation
power with more efficient (i.e., lower order inner tensors) G-invariant networks. Of specific interest are
G-invariant networks that use only first order tensors. In section 8.5 we prove the following necessary
condition for universality of first-order G-invariant networks:

Theorem 9. Let G Sn. If first order G-invariant networks are universal, then
��[n]2/H

�� <
��[n]2/G

�� for
any strict super-group G < H Sn.

|[n]2/G| is the number of equivalence classes of [n]2 defined by the relation: (i1, i2) ⇠ (j1, j2) if j` = g(i`),
` = 1, 2 for some g 2 G. Intuitively, this condition asks that super-groups of G have strictly better separation
of the double index space [n]2.

8.3 G-invariant networks universality

The key to showing theorem 7, namely that G-invariant networks are universal, is showing they can approx-
imate a set of functions that are: (i) G-invariant; and (ii) can approximate arbitrary G-invariant functions to
a desired precision. The G-invariant polynomials are an example of such a set:

Definition 4. The G-invariant polynomials are all the polynomials in x1, . . . , xn over R that are also G-
invariant functions. They are denoted R[x1, . . . , xn]G, where R[x1, . . . , xn] is the set of all polynomials
over R.

To see that G-invariant polynomials can approximate any arbitrary (continuous) function f : K ⇢ Rn
! R,

where K is a compact set, one can use the Stone-Weiestrass (SW) theorem, as done in [259]: First use
SW to approximate f over a symmetrized domain K 0 = [g2Gg ·K by some (not necessarily G-invariant)
polynomial p 2 R[x1, . . . , xn]. Second, consider

q(x) =
1

|G|

X

g2G
p(g · x).

61

Doctoral Dissertation Haggai Maron August 2019

q is a G-invariant polynomial and hence

q 2 R[x1, . . . , xn]G,

furthermore for x 2 K:

|q(x)� f(x)|

1

|G|

X

g2G

��p(g · x)� f(g · x)
�� max

x2K0
|p(x)� f(x)| .

Our goal in this section is to prove the following proposition that, together with the comment above, prove
theorem 7:

Proposition 5. For any ✏ > 0, K ⇢ Rn compact set, and G-invariant polynomial p 2 R[x1, . . . , xn]G there
exists a G-invariant network F that approximates p to an ✏-accuracy, namely maxx2K |F (x)� p(x)| < ✏.

The proposition will be proved in several steps:

(i) We represent p as p(x) =
P

d

k=0 pk(x), where pk is a G-invariant homogeneous polynomial of degree
k, i.e., pk 2 Rk[x1, . . . , xn]G.

(ii) We characterize all homogeneous G-invariant polynomials of a fixed degree k. In particular we find a
basis to all such polynomials, bk1, bk2, . . . , bknk

2 Rk[x1, . . . , xn]G. Using the bases of homogeneous
G-invariant polynomials of degrees up-to d we write

p(x) =
dX

k=0

nkX

j=1

↵kjbkj(x). (51)

(iii) We approximate each basis element bkj using a G-invariant network.

(iv) We construct a G-invariant network F approximating p to an ✏-accuracy using Equation 51 and (iii).

8.3.1 Proof of proposition 5

Part (i): It is a known fact that a G-invariant polynomial can be written as a sum of homogeneous G-
invariant polynomials [134]:

Lemma 6. Let p : Rn
! R be a G-invariant polynomial of degree d. Then p can be written as p(x) =P

d

k=0 pk(x) where pk are homogeneous G-invariant polynomials of degree k.

Part (ii): We need to find bases for the linear spaces of homogeneous G-invariant polynomials of degree
k = 0, 1, . . . , d, i.e., Rk[x1, . . . , xn]G. Any homogeneous polynomial of degree k can be written as

p(x) =
nX

i1,...,ik=1

Wi1...ik xi1 · · ·xik , (52)

where W 2 R
n
k is its coefficient tensor; since xi1 · · ·xik = xi�(1)

· · ·xi�(k)
for all � 2 Sk, a unique choice

of W can be obtained by taking a symmetric W . That is, W that satisfies Wi1···ik = Wi�(1)···i�(k)
, for all

� 2 Sk. In short, we ask W 2 Symk(Rn) ⇢ Rn
k . For example, the case k = 2 amounts to representing a

quadratic form using a symmetric matrix, that is W satisfies in this case W = W T . The next proposition
shows that if p is G-invariant, its coefficient tensor is a fixed point of the action of G on symmetric tensors
W 2 R

n
k :

62

Doctoral Dissertation Haggai Maron August 2019

Proposition 6. Let p 2 Rk[x1, . . . , xn]G. Then its coefficient tensor W 2 R
n
k satisfies the fixed point

equation:
g ·W = W, 8g 2 G. (53)

Proof. From the fact that p is G-invariant we get the following set of equations p(x) = p(g · x), for all
g 2 G.

p(x) = p(g · x)

=
nX

i1,...,ik=1

Wi1...ik xg�1(i1) · · ·xg�1(ik)

=
nX

i1,...,ik=1

Wg(i1)...g(ik) xi1 · · ·xik .

By equating monomials’ coefficients of p(x) and p(g · x) and the symmetry of W we get

Wi1...ik = Wg(i1)...g(ik).

This implies that W satisfies g ·W = W for all g 2 G.

Equation 53 is a linear homogeneous system of equations and therefore the set of solutions W forms a linear
space. To define a basis for this linear space we first define the following equivalence relation: (i1, . . . , ik) ⇠
(j1, . . . , jk) if there exists g 2 G and � 2 Sk so that j` = g(i�(`)), ` = 1, . . . , k. Intuitively, g takes care of
the G-invariance while � factors out the fact that the monomials xi1 · · ·xik = x�(i1) · · ·x�(ik). For example,
let n = 5, k = 3, g = (23)(45), � = (23) (we use cycle notation), then we have: (2, 2, 4) ⇠ (3, 5, 3). The
equivalence classes are denoted ⌧ and called the k-classes. We show:

Proposition 7. The set of polynomials

p⌧ (x) =
X

(i1,...,ik)2⌧

xi1 · · ·xik , (54)

where ⌧ is a k-class, form a basis to Rk[x1, . . . , xn]G.

Proof. Denote W ⌧ the symmetric coefficient tensor of p⌧ , Note that

W ⌧

i1...ik
=

(
1 (i1, . . . , ik) 2 ⌧

0 otherwise
. (55)

Since
p⌧ (g · x) =

X

(i1,...,ik)2⌧

xg�1(i1) · · ·xg�1(ik) = p⌧ (x),

p⌧ 2 Rk[x1, . . . , xn]G. The set of polynomials p⌧ , with ⌧ a k-classes, is a linearly independent set since
each p⌧ contains a different collection of monomials. By Proposition 6, the symmetric coefficient tensor W
of every q 2 Rk[x1, . . . , xn]G satisfies the fixed-point equation, (53). This in particular means that W is
constant on its k-classes. Hence W can be written as linear combination of W ⌧ , see also (55).

As we later show, the fixed point equation, (53), is also used to characterize and compute a basis for the space
of linear permutation-equivariant and invariant layers [158]. These equations are equivalently formulated
using weight sharing scheme in [203]. A slight difference in this case, that deals with polynomials, is the
additional constraints that formulate the symmetry of W which are needed since every polynomial of degree
> 1 has several representing tensors W .

63

Doctoral Dissertation Haggai Maron August 2019

Part (iii): Our next step is approximating each p⌧ with a G-invariant network. The next proposition
introduces the building blocks of this construction:

Proposition 8. Let ⌧ be a k-class and let L⌧

`
: Rn

! R
n
k , ` = 1, . . . , k, be a linear operator defined as

follows:
For x 2 Rn

L⌧

`
(x)i1...ik =

(
xi` (i1, . . . , ik) 2 ⌧

0 otherwise
.

Then L⌧

`
is a linear G-equivariant function, that is

L⌧

`
(g · x) = g · L⌧

`
(x), 8x 2 Rn, g 2 G.

Proof. We have :

g · L⌧

`
(x)i1...ik =

(
xg�1(i`) (g�1(i1), . . . , g�1(ik)) 2 ⌧

0 otherwise

On the other hand,

L⌧

`
(g · x)i1...ik =

(
xg�1(i`) (i1, . . . , ik) 2 ⌧

0 otherwise

and both expressions are equal since (i1, . . . , ik) 2 ⌧ if and only if (g�1(i1), . . . , g�1(ik)) 2 ⌧ by definition
of ⌧ .

Next, we construct the approximating G-invariant network:

Proposition 9. For any ✏ > 0, K ⇢ Rn compact set, and ⌧ k-class there exists a G-invariant network F ⌧

that approximates p⌧ from (54) to an ✏-accuracy.

Proof. Let c > 0 be sufficiently large so that K ⇢ [�c, c]n ⇢ Rn. Denote mk : Rk
! R an MLP

that approximates the multiplication function, f(y1, . . . , yk) =
Q

k

i=1 yi, in [�c, c]k to n�k✏-accuracy, i.e.,
max�cyic

��f(y)�mk(y)
�� < n�k✏.

Consider the following G-invariant network: First, given an input x 2 Rn map it to Rn
k⇥k (i.e., k is the

number of channnels) by
L⌧ (x)i1...ik,` = L⌧

`
(x)i1...ik . (56)

L⌧ : Rn
! Rn

k⇥k is a linear equivariant layer (see (50)). Second, apply mk to the feature dimension in
Rn

k⇥k. That is, given y 2 Rn
k⇥k define

Mk(y)i1,...,ik = mk(yi1...,ik,1, . . . , yi1...,ik,k).

Note that Mk : Rn
k⇥k

! Rn
k can be interpreted as a composition of equivariant linear layers 5.

Lastly, denote s : Rn
k
! R the summation layer: for z 2 Rn

k , s(z) =
P

n

i1...ik=1 zi1...ik . Note that
Mk, s are equivariant, invariant (respectively) for all G Sn. This construction can be visualized using the
following diagram:

Rn L
⌧

��! Rn
k⇥k M

k

��! Rn
k s
�! R

5In fact, any application of an MLP to the feature dimension is G-equivariant for any G Sn since it can be realized by scaling
of the identity operator, possibly with a constant and non-linear point-wise activations (see e.g.[197, 264]).

64

Doctoral Dissertation Haggai Maron August 2019

This G-invariant network F ⌧ = s�Mk
�L⌧ approximates p⌧ to an ✏-accuracy over the compact set K ⇢ Rn.

Indeed, let x 2 K, then

|F ⌧ (x)� p⌧ (x)|

nX

i1...ik=1

���Mk(L⌧ (x))i1...ik �W ⌧

i1...ik
xi1 · · ·xik

���

nX

i1...ik=1

(��mk(xi1 , . . . , xik)� xi1 · · ·xik
�� (i1,...,ik)2⌧

0 otherwise

 ✏,

where in the last inequality we used the n�k✏-accuracy of mk to the product operator in [�c, c]k ⇢ Rk.

Part (iv): In the final stage, we would like to approximate an arbitrary p 2 R[x1, . . . , xn]G with a G-
invariant network to ✏-accuracy over a compact set K ⇢ Rn.

Proof. (proposition 5) Let us denote by bk1, . . . , bknk
the polynomials p⌧ , with ⌧ the k-classes. Let F kj

denote the G-invariant network approximating bkj , k = 0, 1, . . . d, j 2 [nk], to an ✏-accuracy over the set
K, the existence of which is guaranteed by proposition 9. We now utilize the decomposition of p shown in
(51) and get

������
p(x)�

dX

k=0

nkX

j=1

↵kjF
kj(x)

������

dX

k=0

nkX

j=1

|↵kj |

���bkj(x)� F kj(x)
���

 ✏ k↵k1 ,

where k↵k1 =
P

k,j
|↵kj | depends only upon p, where ✏ is arbitrary. To finish the proof we need to show

that F =
P

d

k=0

P
nk
j=1 ↵kjF kj can indeed be realized as a single, unified G-invariant network. This is a

simple yet technical construction and we defer the proof of this fact to the supplementary material:

Lemma 7. There exists a G-invariant network in the sense of definition 3 that realizes the sum of G-invariant
networks F =

P
d

k=0

P
nk
j=1 ↵kjF kj .

8.3.2 Bounded order construction

We have constructed a G-invariant network F that approximates an arbitrary G-invariant polynomial p 2

R[x1, . . . , xn]G of degree d. The network F uses d-dimensional tensors, where d matches the degree of
p. In this subsection we construct a G-invariant network F that approximates p with maximal tensor order
that depends only on the group G Sn. Therefore, the tensor order is independent of the degree of the
polynomial p. We use the following theorem by Noether [134]:

65

Doctoral Dissertation Haggai Maron August 2019

Theorem 10. (Noether) Let G be a finite group acting linearly on R
n. There exist finitely many G-invariant

polynomials f1, ..., fm 2 R[x1, . . . , xn]G such that any invariant polynomial p 2 R[x1, . . . , xn]G can be
expressed as

p(x) = h(f1(x), ..., fm(x)),

where h 2 R[x1, . . . , xm] is a polynomial and deg(fi) |G|, i = 1, . . . ,m.

The idea of using a set of generating invariant polynomials in the context of universality was introduced in
[259].
For the case of interest in this section, namely G Sn, there exists a generating set of G-invariant polynomi-
als of degree bounded by n(n�1)

2 , for n � 3, see [92]. We can now repeat the construction above, building
a G-invariant network Fi approximating fi to a ✏1-accuracy, i = 1, . . . ,m. The maximal order of these
networks is bounded by d

n(n�1)
2 . These networks can be combined, as above, to a single G-invariant

network F : Rn
! Rm with the final output approximating f(x) = (f1(x), . . . , fm(x)) to a ✏1-accuracy.

Now we compose the output of F with an MLP H : Rm
! R approximating the polynomial h over the

compact set f(K) + B✏ ⇢ Rm to an ✏-accuracy, where B✏ is a closed ball centered at the origin of radius ✏
and the sum is the Minkowski sum. Since H is continuous and f(K) + B✏ is compact, there exists � > 0
so that |H(y)�H(y0)| ✏ if ky � y0k2 �. We use ✏1 = min {�, "} for the construction of F above. We
have:

|H(F (x))� h(f(x))| |H(F (x))�H(f(x))|

+ |H(f(x))� h(f(x))| 2✏,

for all x 2 K. We have constructed H �F that is a G-invariant network with maximal tensor order bounded
by n(n�1)

2 approximating p to an arbitrary precision.

8.3.3 Examples

Universality of (hyper-) graph networks. Graph, or hyper-graph data can be described using tensors
X 2 Rn

k⇥a, where n is the number of vertices of the graph and xi1,i2,...,ik,: 2 Ra is a feature vector
attached to a (generalized-)edge defined by the ordered set of vertices (i1, i2, . . . , ik). For example, an
adjacency matrix of an n-vertex graph is described by X 2 Rn

2 . The graph symmetries are reordering the
vertices by a permutation, namely g ·X , where g 2 Sn. Typically, any function we would like to learn on
graphs would be invariant to this action. Recently, [158] characterized the spaces of equivariant and invariant
linear layers with this symmetry, provided a formula for their basis and employed the corresponding G-
invariant networks for learning graph-related tasks. A corollary of Theorem 5 is that this construction yields
a universal approximator of continuous functions defined on graphs. This is in contrast to the popular
message passing neural network model [89] that was recently shown to be non-universal [256].

Universality of rotation invariant convolutional networks. For learning tasks involving m⇥m images
one might require invariance to periodic translations and 90 degree rotations. Note that periodic translations
and 90 degree rotations can be seen as permutations in Sn, n = m2, acting on the pixels of the image. Con-
structing a suitable G-invariant network would lead, according to Theorem 5, to a universal approximator.

8.4 A lower bound on equivariant layer order

In the previous section we showed how an arbitrary G-invariant polynomial can be approximated with a
G-invariant network with tensor order d = d(G)

n(n�1)
2 . This upper-bound would be prohibitive in

66

Doctoral Dissertation Haggai Maron August 2019

Figure 30: Illustration of the (n � 2)-transitivity of An, the main property we use in this section. Any subset of
distinct n� 2 elements can be mapped to any other subset of distinct n� 2 elements (gray). If needed, a transposition
can be applied to the remaining 2 elements (blue) to assure an even permutation.

practice. In this section we prove a lower bound: We show that there exists a group for which the tensor
order cannot be less than n�2

2 if we wish to maintain the universal approximation property.
We consider the alternating group, G = An Sn. Remember that g 2 An if g has an even number of
transpositions.

Definition 5. A group G Sn is k-transitive if for every two sequences (i1, i2, . . . , ik), (j1, j2, . . . , jk) of
distinct elements in [n] there exists g 2 G so that j` = g(i`), for ` = 1, . . . , k.

The alternating group is (n� 2)-transitive (see figure 30 and [66]). Our goal is to prove:

Theorem 8. If an An-invariant network has the universal approximation property, then it consists of tensors
of order at least n�2

2 .

For the proof we first need a characterization of the linear equivariant layers L : Rn
k⇥a

! Rn
l⇥b, where

l = 0 represents the invariant case. By definition L(g ·X) = g ·L(X) for all X 2 Rn
k⇥a. In particular this

means that
g�1

· L(g ·X) = L(X)

Recall that L is an affine map (see definition 2) and therefore can be represented as a sum of a purely linear
part and a constant part. Representing the linear part of L as a tensor L 2 Rn

k+l⇥a⇥b these equations
become the fixed-point equation for linear equivariant layers (see supplementary material for derivation):

g · L = L, g 2 G. (57)

The constant part of L can be encoded using a tensor B 2 Rn
l⇥b that satisfies (57) as-well. Note the that this

fixed point equation is similar to the fixed point equation of homogeneous G-invariant polynomials, (53).
We denote by L

G the collection of L : Rn
k⇥a

! Rn
l⇥b linear G-equivariant (l > 0) or G-invariant (l = 0)

layers.

Proposition 10. If k + l n� 2, then L
An = L

Sn .

Proof. In view of the fixed point equation for equivariant/invariant layers (57) we need to show the solution
set to this equation is identical for G = An and G = Sn, as long as k + l n � 2. The solution set
of the fixed point equation consists of tensors L that are constant on each equivalence class defined by the
equivalence relation: (i1, . . . , ik+l) ⇠ (j1, . . . , jk+l) if j` = g(i`) for ` = 1, . . . , k + l.
Both An and Sn are (n � 2)-transitive6. Therefore, the equivalence relations defined above for An and Sn

reduce to the same equivalence relation (i1, . . . , ik+l) ⇠ (j1, . . . , jk+l) if i↵ = i� if and only if j↵ = j� ,
for all ↵,� 2 [k + l] (see [158] where these classes are called equality patterns). Since this equivalence

6Sn is in-fact n-transitive and is therefore also k-transitive for all k n.

67

Doctoral Dissertation Haggai Maron August 2019

relation is the same for An, Sn, we get that the solution set of the fixed point equation (57) is the same for
both groups. Since the constant part tensor B is of smaller order than k+ l n�2, the same argumentation
applies to the constant part, as-well.

Proposition 10 implies that any An-invariant network with tensor order (n � 2)/2 will be in fact Sn-
invariant. Therefore, one approach to show that such networks have limited approximation power is to come
up with an An-invariant continuous function that is not Sn-invariant, as follows:

Proof. (Theorem 8) Consider the Vandermonde polynomial V (x) =
Q

1i<jn
(xi � xj). It is not hard

to check that V is An-invariant but not Sn-invariant (consider, e.g., g = (12) 2 Sn). Pick x 2 R
n with

distinct coordinates. Then it holds that V (x) 6= 0. Let ✏ > 0 and K ⇢ Rn a compact set containing both
x, g · x for g = (12). Assume by way of contradiction that there exists an An-invariant network F , which is
Sn-invariant due to the above, such that |V (x)� F (x)| ✏ as well as:

|V (g · x)� F (g · x)| = |(�1)V (x)� F (x)|

= |V (x) + F (x)|

 ✏

These last equations imply that |V (x)| ✏ and since ✏ is arbitrary we get V (x) = 0, a contradiction.

8.5 Universality of first order networks

We have seen that G-invariant networks with tensor order n(n�1)
2 are universal. On the other hand for

general permutation groups G the tensor order is at least (n� 2)/2 if universality is required. A particularly
important question for applications, where higher order tensors are computationally prohibitive, is which
permutation groups G give rise to first order G-invariant networks that are universal.

Definition 6. A first order G-invariant network is a G-invariant network where the maximal tensor order is
1.

In this section we discuss this (mostly) open question. First, we note that there are a few cases for which
first order G-invariant networks are known to be universal: for instance, when G = {e} (i.e., the trivial
group), G-invariant networks are composed of fully connected layers, a case which is covered by the original
universal approximation theorems [59, 110]. First order universality is also known when G is (possibly high
dimensional) grid (e.g., G = Zn1 ⇥ · · · ⇥ Znk) [259], a case that includes periodic convolutional neural
networks. Universality of first order networks is also known when G = Sn [264, 197, 259] in the context of
invariant networks that operate on sets or point clouds.
Our goal in this section is to derive a necessary condition on G for the universality of first order G-invariant
networks. To this end, we first find a function, playing the role of the Vandermonde polynomial in the
previous section, that is G-invariant but not H-invariant, where G < H Sn.

Lemma 8. Let G < H Sn. Then there exists a continuous function f : Rn
! R which is G-invariant

but not H-invariant.

Proof. Pick a point x0 2 R
n with distinct coordinates. Since the stabilizer (Sn)x0 is trivial (i.e., no permu-

tation fixes x0 excluding the identity), the size of the orbits of x0 equals the size of the acting group. Namely,
|G · x0| = |G| and |H · x0| = |H|. Furthermore, since |G| < |H| and G · x0 ⇢ H · x0, we get that the H
orbit strictly includes the G orbit. That is, G · x (H · x. Since H · x0 is a finite set of points, there exists a

68

Doctoral Dissertation Haggai Maron August 2019

continuous function f̂ such that f̂ |G·x0 = 1, and f̂ |H·x0\G·x0
= 0. Define f(x) = 1

|G|
P

g2G f̂(g · x). Now,
f is G-invariant by construction but f(x0) = 1 and f(h · x0) = 0 for h · x0 2 H · x0 \G · x0. Therefore, f
is not H-invariant.

In case of first order G-invariant networks the equivariant/invariant layers have the form L : Rn⇥a
! Rn⇥b

and satisfy the fixed point equations (57). The solution set of the purely linear equivariant layers consists
of tensors L 2 Rn

2⇥a⇥b that are constant on equivalence classes of indices defined by the equivalence
relation (i1, i2) ⇠ (j1, j2) if there exists g 2 G so that j` = g(i`), ` = 1, 2. We denote the number of
equivalence classes by |[n]2/G|. The solution set of constant equivariant operators are tensors B 2 Rn⇥b

that are constant on equivalence classes defined by the equivalence relation i ⇠ j if there exists g 2 G so
that j = g(i). We denote the number of these classes by |[n]/G|. We prove:

Theorem 9. Let G Sn. If first order G-invariant networks are universal, then
��[n]2/H

�� <
��[n]2/G

�� for
any strict super-group G < H Sn.

Proof. Assume by contradiction that there exists a strict super-group G < H Sn so that
��[n]2/G

�� =��[n]2/H
��. This in particular means that |[n]/G| = |[n]/H|. Therefore LG = LH . That is, the spaces of

equivariant and invariant linear layers coincide for G and H . This implies, as before, that every first order
G-invariant network is also H-invariant.
We proceed similarly to the proof of theorem 8: By lemma 8, there exists a continuous function f : Rn

! R
that is G-invariant but not H-invariant. Let x0 be a point with distinct coordinates where f(x0) = 1 (it exists
by construction, see proof of theorem 8). Furthermore, by construction f(h·x0) = 0 if h·x0 2 H ·x0\G·x0.
Let ✏ > 0 and K ⇢ Rn a compact set containing both x0, h · x0. Assume by way of contradiction that
there exists a first order G-invariant network F (which is also H-invariant in view of the above) such that
|f(x0)� F (x0)| ✏ as well as:

|f(h · x0)� F (h · x0)| = |f(h · x0)� F (x0)| ✏.

These last equations imply that 1 = |f(x0)� f(h · x0)| |f(x0)�F (x0)|+ |F (x0)� f(h · x0)| 2✏ and
since ✏ is arbitrary we get a contradiction.

Using theorem 9 we can show that there exist a few infinite families of permutation groups (excluding the
alternating group An) for which first order invariant networks are not universal. For example, any strict
subgroup G < Sn that is 2-transitive is such a group since in this case

��[n]2/G
�� =

��[n]2/Sn

�� and conse-
quently G-invariant/equivariant layers are also Sn-invariant/equivariant. Examples of 2-transitive permuta-
tion groups include projective linear groups over finite fields PSLd(Fq) (for q = pn where p, n 2 N , p is
prime) that act on the finite projective space, and can be seen as a subgroup of Sn for n = (qd � 1)/(q � 1)
(the number of elements in this space). Similarly affine subgroups over finite fields A�Ld(Fq) that act on
F d
q can be shown to be 2-transitive as a subgroup of Sn for n = qd. See [66] for a full classification of

2-transitive subgroups of Sn.

Relation to [203]. Groups for which the condition in theorem 9 holds are called 2-closed and were first
introduced by [250] (see [17] for further study). Theorem 9 reveals an interesting connection between our
work and the work of [203] that studies parameter sharing schemes. One of the basic notions defined in their
paper is the notion of uniquely G-equivariant functions, which describes functions that are G-equivariant
but not equivariant to any super-group of G. For example, a consequence of proposition 10 is that An Sn

(with the representation used in this section) has no uniquely equivariant linear functions between tensors

69

Doctoral Dissertation Haggai Maron August 2019

of total order n� 2. It was shown in [203] that 2-closed groups are exactly the groups for which one can
find a uniquely equivariant function. In this section we proved that the existence of a uniquely G-equivariant
linear function is a necessary condition for first order universality. As stated in [203] some examples for
2-closed groups are fixed-point free groups (e.g., the cyclic group Cn) and Sn itself.

8.6 Conclusion

In this section we have considered the universal approximation property of a popular invariant neural net-
work model. We have shown that these networks are universal with a construction that uses tensors of order

n(n�1)
2 , which makes this architecture impractical. On the other hand, there exists a permutation group

for which we have proved a lower bound of n�2
2 on the tensor order required to achieve universality. We

then addressed the more practical question of which groups G allow first order G-invariant networks to be
universal. We have proved that 2-closedness of G is a necessary condition, and gave examples of infinite
permutation group families that do not satisfy this condition.
Our work is a first step in advancing the understanding of approximation power of a large class of invariant
neural networks that becomes increasingly popular in applications. Several questions remain open: First, a
classification of 2-closed groups will give us a complete answer to which networks are first-order universal.
As far as we know this is an open question in group theory. Still, mapping the 2-closed landscape for specific
groups G that are interesting for machine learning applications is a worthy challenge. Second, In case one
wishes to construct a G-invariant network for a group G that is not 2-closed, developing fast and efficient
implementations of higher order layers seems like a potentially useful direction. Lastly, another interesting
venue for future work might be to come up with new, possibly non-linear, models for invariant networks.

8.7 Proofs

Lemma 7. There exists a G-invariant network in the sense of definition 3 that realizes the sum of G-invariant
networks F =

P
d

k=0

P
nk
j=1 ↵kjF kj .

Proof. We need to show that F =
P

d

k=0

P
nk
j=1 ↵kjF kj can indeed be realized as a single, unified G-

invariant network. As we already saw, each network F kj has the structure

Rn L
⌧

��! Rn
k⇥k M

k

��! Rn
k s
�! R,

with a suitable k-class ⌧ . To create the unified G-invariant network we first lift each F kj to the maximal
dimension d. That is, eF kj with the structure

Rn
eLkj

��! Rn
d⇥k

fMk

��! Rn
d s
�! R.

This is done by composing each equivariant layer L : Rn
k⇥a

! Rn
l⇥b with two linear equivariant operators

U b : Rn
k⇥b

! Rn
d⇥b and Da : Rn

d⇥a
! Rn

k⇥a,

U bLDa : Rn
d⇥a

! Rn
d⇥b, (58)

where
U b(x)i1...id,j = xi1...ik,j

and

Da(y)i1...ik,j = nk�d

nX

ik+1...id=1

yi1...ikik+1...id,j .

70

Doctoral Dissertation Haggai Maron August 2019

Since U b, Da are equivariant, U bLDa in (58) is equivariant. Furthermore Da
� � � Ua = �, where � is

the pointwise activation function. Lastly, given two G-invariant networks with the same tensor order d they
can be combined to a single G-invariant network by concatenating their features. That is, if L1 : Rn

d⇥a
!

Rn
d⇥b, and L2 : Rn

d⇥a
0
! Rn

d⇥b
0 , then their concatenation would yield L1,2 : Rn

d⇥(a+a
0)
! Rn

d⇥(b+b
0).

Applying this concatenation to all eF kj we get our unified G-invariant network.

Fixed-point equation for equivariant layers. We have an affine operator L : Rn
k⇥a

! Rn
l⇥b satisfying

g�1
· L(g ·X) = L(X), (59)

for all g 2 G, X 2 Rn
k⇥a. The purely linear part of L can be written using a tensor L 2 Rn

k+l⇥a⇥b: Write

L(X)j1...jl,j =
X

i1...ik,i

Lj1...jl,i1...ik,i,jXi1...ik,i.

Writing (59) using this notation gives:
X

i1...ik,i

Lg(j1)...g(jl),i1...ik,i,jXg�1(i1)...g�1(ik),i

=
X

i1...ik,i

Lg(j1)...g(jl),g(i1)...g(ik),i,jXi1...ik,i

=
X

i1...ik,i

Lj1...jl,i1...ik,i,jXi1...ik,i,

for all g 2 G and X 2 Rn
k⇥a. This implies (57), namely

g · L = L, g 2 G.

The constant part of L is done similarly.

71

Doctoral Dissertation Haggai Maron August 2019

9 Provably powerful graph networks

This section is based on [161].

9.1 Introduction

Graphs are an important data modality which is frequently used in many fields of science and engineering.
Among other things, graphs are used to model social networks, chemical compounds, biological structures
and high-level image content information. One of the major tasks in graph data analysis is learning from
graph data. As classical approaches often use hand-crafted graph features that are not necessarily suitable to
all datasets and/or tasks (e.g., [135]), a significant research effort in recent years is to develop deep models
that are able to learn new graph representations from raw features (e.g., [93, 69, 181, 128, 236, 172, 102,
175, 256]).
Currently, the most popular methods for deep learning on graphs are message passing neural networks in
which the node features are propagated through the graph according to its connectivity structure [89]. In a
successful attempt to quantify the expressive power of message passing models, [175, 256] suggest to com-
pare the model’s ability to distinguish between two given graphs to that of the hierarchy of the Weisfeiler-
Lehman (WL) graph isomorphism tests [95, 18]. Remarkably, they show that the class of message passing
models has limited expressiveness and is not better than the first WL test (1-WL, a.k.a. color refinement).
For example, Figure 31 depicts two simple graphs that 1-WL cannot distinguish, hence indistinguishable by
any message passing algorithm.

Figure 31: Two
graphs not distin-
guished by 1-WL.

The goal of this work is to explore and develop GNN models that possess higher
expressiveness while maintaining scalability, as much as possible. We present two
main contributions. First, establishing a baseline for expressive GNNs, we prove that
the recent k-order invariant GNNs [158, 159] offer a natural hierarchy of models that
are as expressive as the k-WL tests, for k � 2. Second, as k-order GNNs are not
practical for k > 2 we develop a simple, novel GNN model, that incorporates standard
MLPs of the feature dimension and a matrix multiplication layer. This model, working
only with k = 2 tensors (the same dimension as the graph input data), possesses the
expressiveness of 3-WL. Since, in the WL hierarchy, 1-WL and 2-WL are equivalent,
while 3-WL is strictly stronger, this model is provably more powerful than the message
passing models. For example, it can distinguish the two graphs in Figure 31. As far as
we know, this model is the first to offer both expressiveness (3-WL) and scalability (k = 2).
The main challenge in achieving high-order WL expressiveness with GNN models stems from the difficulty
to represent the multisets of neighborhoods required for the WL algorithms. We advocate a novel represen-
tation of multisets based on Power-sum Multi-symmetric Polynomials (PMP) which are a generalization of
the well-known elementary symmetric polynomials. This representation provides a convenient theoretical
tool to analyze models’ ability to implement the WL tests.
A related work to ours that also tried to build graph learning methods that surpass the 1-WL expressiveness
offered by message passing is [175]. They develop powerful deep models generalizing message passing to
higher orders that are as expressive as higher order WL tests. Although making progress, their full model is
still computationally prohibitive for 3-WL expressiveness and requires a relaxed local version compromising
some of the theoretical guarantees.
Experimenting with our model on several real-world datasets that include classification and regression tasks
on social networks, molecules, and chemical compounds, we found it to be on par or better than state of the
art.

72

Doctoral Dissertation Haggai Maron August 2019

9.2 Previous work
Deep learning on graph data. The pioneering works that applied neural networks to graphs are [93, 213]
that learn node representations using recurrent neural networks, which were also used in [146]. Following
the success of convolutional neural networks [136], many works have tried to generalize the notion of
convolution to graphs and build networks that are based on this operation. [42] defined graph convolutions
as operators that are diagonal in the graph laplacian eigenbasis. This paper resulted in multiple follow up
works with more efficient and spatially localized convolutions [108, 64, 128, 144]. Other works define graph
convolutions as local stationary functions that are applied to each node and its neighbours (e.g., [69, 13, 181,
103, 236, 170]). Many of these works were shown to be instances of the family of message passing neural
networks [89]: methods that apply parametric functions to a node and its neighborhood and then apply
some pooling operation in order to generate a new feature for each node. In a recent line of work, it was
suggested to define graph neural networks using permutation equivariant operators on tensors describing
k-order relations between the nodes. [132] identified several such linear and quadratic equivariant operators
and showed that the resulting network can achieve excellent results on popular graph learning benchmarks.
[158] provided a full characterization of linear equivariant operators between tensors of arbitrary order. In
both cases, the resulting networks were shown to be at least as powerful as message passing neural networks.
In another line of work, [177] suggest expressive invariant graph models defined using averaging over all
permutations of an arbitrary base neural network.

Weisfeiler Lehman graph isomorphism test. The Weisfeiler Lehman tests is a hierarchy of increasingly
powerful graph isomorphism tests [95]. The WL tests have found many applications in machine learning:
in addition to [256, 175], This idea was used in [219] to construct a graph kernel method, which was further
generalized to higher order WL tests in [173]. [142] showed that their suggested GNN has a theoretical
connection to the WL test. WL tests were also used in [267] for link prediction tasks. In a concurrent work,
[174] suggest constructing graph features based on an equivalent sparse version of high-order WL achieving
great speedup and expressiveness guarantees for sparsely connected graphs.

9.3 Preliminaries

We denote a set by {a, b, . . . , c}, an ordered set (tuple) by (a, b, . . . , c) and a multiset (i.e., a set with
possibly repeating elements) by {{a, b, . . . , c}}. We denote [n] = {1, 2, . . . , n}, and (ai | i 2 [n]) =
(a1, a2, . . . , an). Let Sn denote the permutation group on n elements. We use multi-index i 2 [n]k to
denote a k-tuple of indices, i = (i1, i2, . . . , ik). g 2 Sn acts on multi-indices i 2 [n]k entrywise by
g(i) = (g(i1), g(i2), . . . , g(ik)). Sn acts on k-tensors X 2 Rn

k⇥a by (g ·X)i,j = Xg�1(i),j , where i 2 [n]k,
j 2 [a].

9.3.1 k-order graph networks

[158] have suggested a family of permutation-invariant deep neural network models for graphs. Their main
idea is to construct networks by concatenating maximally expressive linear equivariant layers. More for-
mally, a k-order invariant graph network is a composition F = m � h � Ld � � � · · · � � � L1, where
Li : Rn

ki⇥ai ! Rn
ki+1⇥ai+1 , maxi2[d+1] ki = k, are equivariant linear layers, namely satisfy

Li(g ·X) = g · Li(X), 8g 2 Sn, 8X 2 Rn
ki⇥ai ,

73

Doctoral Dissertation Haggai Maron August 2019

� is an entrywise non-linear activation, �(X)i,j = �(Xi,j), h : Rn
kd+1⇥ad+1 ! Rad+2 is an invariant linear

layer, namely satisfies

h(g ·X) = h(X), 8g 2 Sn, 8X 2 Rn
kd+1⇥ad+1 ,

and m is a Multilayer Perceptron (MLP). The invariance of F is achieved by construction (by propagating
g through the layers using the definitions of equivariance and invariance):

F (g ·X) = m(· · · (L1(g ·X)) · · ·) = m(· · · (g · L1(X)) · · ·) = · · · = m(h(g · Ld(· · ·))) = F (X).

When k = 2, [158] proved that this construction gives rise to a model that can approximate any message
passing neural network [89] to an arbitrary precision; [159] proved that these models are universal for a very
high tensor order of k = (n2), which is of little practical value (an alternative proof was recently suggested
in [123]).

9.3.2 The Weisfeiler-Lehman graph isomorphism test

Let G = (V,E, d) be a colored graph where |V | = n and d : V ! ⌃ defines the color attached to each
vertex in V , ⌃ is a set of colors. The Weisfeiler-Lehman (WL) test is a family of algorithms used to test
graph isomorphism. Two graphs G,G0 are called isomorphic if there exists an edge and color preserving
bijection � : V ! V 0.
There are two families of WL algorithms: k-WL and k-FWL (Folklore WL), both parameterized by k =
1, 2, . . . , n. k-WL and k-FWL both construct a coloring of k-tuples of vertices, that is c : V k

! ⌃. Testing
isomorphism of two graphs G,G0 is then performed by comparing the histograms of colors produced by the
k-WL (or k-FWL) algorithms.
We will represent coloring of K-tuples using a tensor C 2 ⌃n

k , where Ci 2 ⌃, i 2 [n]k denotes the color
of the k-tuple vi = (vi1 , . . . , vik) 2 V k. In both algorithms, the initial coloring C0 is defined using the
isomorphism type of each k-tuple. That is, two k-tuples i, i0 have the same isomorphism type (i.e., get the
same color, Ci = Ci0) if for all q, r 2 [k]: (i) viq = vir () vi0q = vi0r ; (ii) d(viq) = d(vi0q); and (iii)
(vir , viq) 2 E () (vi0r , vi0q) 2 E. Clearly, if G,G0 are two isomorphic graphs then there exists g 2 Sn so
that g · C 00 = C0.
In the next steps, the algorithms refine the colorings C l, l = 1, 2, . . . until the coloring does not change
further, that is, the subsets of k-tuples with same colors do not get further split to different color groups. It
is guaranteed that no more than l = poly(n) iterations are required [68].
The construction of C l from C l�1 differs in the WL and FWL versions. The difference
is in how the colors are aggregated from neighboring k-tuples. We define two notions of
neighborhoods of a k-tuple i 2 [n]k:

Nj(i) =
n
(i1, . . . , ij�1, i

0, ij+1, . . . , ik)
��� i0 2 [n]

o
(60)

NF

j (i) =
⇣
(j, i2, . . . , ik), (i1, j, . . . , ik), . . . , (i1, . . . , ik�1, j)

⌘
(61)

Nj(i), j 2 [k] is the j-th neighborhood of the tuple i used by the WL algorithm, while
NF

j
(i), j 2 [n] is the j-th neighborhood used by the FWL algorithm. Note that Nj(i) is a set of n k-tuples,

while NF

j
(i) is an ordered set of k k-tuples. The inset to the right illustrates these notions of neighborhoods

for the case k = 2: the top figure shows N1(3, 2) in purple and N2(3, 2) in orange. The bottom figure shows
NF

j
(3, 2) for all j = 1, . . . , n with different colors for different j.

74

Doctoral Dissertation Haggai Maron August 2019

The coloring update rules are:

WL: C l

i = enc
⇣
C l�1
i

,
⇣
{{C l�1

j
| j 2 Nj(i)}}

��� j 2 [k]
⌘ ⌘

(62)

FWL: C l

i = enc
⇣
C l�1
i

,
nn�

C l�1
j

| j 2 NF

j (i)
� ��� j 2 [n]

oo ⌘
(63)

where enc is a bijective map from the collection of all possible tuples in the r.h.s. of Equations ((62))-((63))
to ⌃.
When k = 1 both rules, ((62))-((63)), degenerate to C l

i
= enc

⇣
C l�1
i

, {{C l�1
j

| j 2 [n]}}
⌘

, which will not
refine any initial color. Traditionally, the first algorithm in the WL hierarchy is called WL, 1-WL, or the
color refinement algorithm. In color refinement, one starts with the coloring prescribed with d. Then, in
each iteration, the color at each vertex is refined by a new color representing its current color and the multiset
of its neighbors’ colors.
Several known results of WL and FWL algorithms [46, 95, 175, 96] are:

1. 1-WL and 2-WL have equivalent discrimination power.

2. k-FWL is equivalent to (k + 1)-WL for k � 2.

3. For each k � 2 there is a pair of non-isomorphic graphs distinguishable by (k + 1)-WL but not by
k-WL.

9.4 Colors and multisets in networks
Before we get to the two main contributions of this section we address three challenges that arise when
analyzing networks’ ability to implement WL-like algorithms: (i) Representing the colors ⌃ in the network;
(ii) implementing a multiset representation; and (iii) implementing the encoding function.

Color representation. We will represent colors as vectors. That is, we will use tensors C 2 Rn
k⇥a to

encode a color per k-tuple; that is, the color of the tuple i 2 [n]k is a vector Ci 2 Ra. This effectively
replaces the color tensors ⌃n

k in the WL algorithm with Rn
k⇥a.

Multiset representation. A key technical part of our method is the way we encode multisets in net-
works. Since colors are represented as vectors in Ra, an n-tuple of colors is represented by a matrix
X = [x1, x2, . . . , xn]T 2 Rn⇥a, where xj 2 Ra, j 2 [n] are the rows of X . Thinking about X as a
multiset forces us to be indifferent to the order of rows. That is, the color representing g · X should be
the same as the color representing X , for all g 2 Sn. One possible approach is to perform some sort (e.g.,
lexicographic) to the rows of X . Unfortunately, this seems challenging to implement with equivariant layers.
Instead, we suggest to encode a multiset X using a set of Sn-invariant functions called the Power-sum Multi-
symmetric Polynomials (PMP) [36, 211]. The PMP are the multivariate analog to the more widely known
Power-sum Symmetric Polynomials, pj(y) =

P
n

i=1 y
j

i
, j 2 [n], where y 2 Rn. They are defined next. Let

↵ = (↵1, . . . ,↵a) 2 [n]a be a multi-index and for y 2 Ra we set y↵ = y↵1
1 · y↵2

2 · · · y↵a
a . Furthermore,

|↵| =
P

a

j=1 ↵j . The PMP of degree ↵ 2 [n]a is

p↵(X) =
nX

i=1

x↵i , X 2 Rn⇥a.

A key property of the PMP is that the finite subset p↵, for |↵| n generates the ring of Multi-symmetric
Polynomials (MP), the set of polynomials q so that q(g ·X) = q(X) for all g 2 Sn, X 2 Rn⇥a (see, e.g.,

75

Doctoral Dissertation Haggai Maron August 2019

[211] corollary 8.4). The PMP generates the ring of MP in the sense that for an arbitrary MP q, there exists
a polynomial r so that q(X) = r (u(X)), where

u(X) :=
�
p↵(X)

�� |↵| n
�
. (64)

As the following proposition shows, a useful consequence of this property is that the vector u(X) is a unique
representation of the multi-set X 2 Rn⇥a.

Proposition 11. For arbitrary X,X 0
2 Rn⇥a: 9g 2 Sn so that X 0 = g ·X if and only if u(X) = u(X 0).

We note that Proposition 11 is a generalization of lemma 6 in [264] (that considers multisets of scalars) to
the case of multisets of vectors. The full proof is provided in section 9.9.

Encoding function. One of the benefits in the vector representation of colors is that the encoding function
can be implemented as a simple concatenation: Given two color tensors C 2 Rn

k⇥a, C 0
2 Rn

k⇥b, the tensor
that represents for each k-tuple i the color pair (Ci, C 0

i
) is simply (C,C 0) 2 Rn

k⇥(a+b).

9.5 k-order graph networks are as powerful as k-WL

Our goal in this section is to show that, for every 2 k n, k-order graph networks [158] are at least as
powerful as the k-WL graph isomorphism test in terms of distinguishing non-isometric graphs. This result
is shown by constructing a k-order network model and learnable weight assignment that implements the
k-WL test.
To motivate this construction we note that the WL update step, (62), is equivariant (see proof in Section
9.10). Namely, plugging in g · C l�1 the WL update step would yield g · C l. Therefore, it is plausible to try
to implement the WL update step using linear equivariant layers and non-linear pointwise activations.

Theorem 11. Given two graphs G = (V,E, d), G0 = (V 0, E0, d0) that can be distinguished by the k-WL
graph isomorphism test, there exists a k-order network F so that F (G) 6= F (G0). On the other direction
for every two isomorphic graphs G ⇠= G0 and k-order network F , F (G) = F (G0).

The full proof is provided in Section 9.11. Here we outline the basic idea for the proof. First, an input graph
G = (V,E, d) is represented using a tensor of the form B 2 Rn

2⇥(e+1), as follows. The last channel of B,
namely B:,:,e+1 (’:’ stands for all possible values [n]) encodes the adjacency matrix of G according to E.
The first e channels B:,:,1:e are zero outside the diagonal, and Bi,i,1:e = d(vi) 2 Re is the color of vertex
vi 2 V .
Now, the second statement in Theorem 11 is clear since two isomorphic graphs G,G0 will have tensor
representations satisfying B0 = g ·B and therefore, as explained in Section 9.3.1, F (B) = F (B0).
More challenging is showing the other direction, namely that for non-isomorphic graphs G,G0 that can be
distinguished by the k-WL test, there exists a k-network distinguishing G and G0. The key idea is to show
that a k-order network can encode the multisets {{Bj | j 2 Nj(i)}} for a given tensor B 2 Rn

k⇥a. These
multisets are the only non-trivial component in the WL update rule, (62). Note that the rows of the matrix
X = Bi1,...,ij�1,:,ij+1,...,ik,: 2 Rn⇥a are the colors (i.e., vectors) that define the multiset {{Bj | j 2 Nj(i)}}.
Following our multiset representation (Section 9.4) we would like the network to compute u(X) and plug
the result at the i-th entry of an output tensor C.
This can be done in two steps: First, applying the polynomial function ⌧ : Ra

! Rb, b =
�
n+a�1
a�1

�

entrywise to B, where ⌧ is defined by ⌧(x) = (x↵ | |↵| n) (note that b is the number of multi-indices ↵

76

Doctoral Dissertation Haggai Maron August 2019

such that |↵| n). Denote the output of this step Y . Second, apply a linear equivariant operator summing
over the j-the coordinate of Y to get C, that is

Ci,: := Lj(Y)i,: =
nX

i0=1

Yi1,··· ,ij�1,i
0,ij+1,...,ik,: =

X

j2Nj(i)

⌧(Bj,:) = u(X), i 2 [n]k,

where X = Bi1,...,ij�1,:,ij+1,...,ik,: as desired. Lastly, we use the universal approximation theorem [59, 110]
to replace the polynomial function ⌧ with an approximating MLP m : Ra

! Rb to get a k-order network
(details are in Section 9.11). Applying m feature-wise, that is m(B)i,: = m(Bi,:), is in particular a k-order
network in the sense of Section 9.3.1.

9.6 A simple network with 3-WL discrimination power

Figure 32: Block structure.

In this section we describe a simple GNN model that has 3-WL
discrimination power. The model has the form

F = m � h �Bd �Bd�1 · · · �B1, (65)

where as in k-order networks (see Section 9.3.1) h is an invariant
layer and m is an MLP. B1, . . . , Bd are blocks with the following
structure (see figure 32 for an illustration). Let X 2 Rn⇥n⇥a denote
the input tensor to the block. First, we apply three MLPs m1,m2 :
Ra

! Rb, m3 : Ra
! Rb

0 to the input tensor, ml(X), l 2 [3]. This
means applying the MLP to each feature of the input tensor independently, i.e., ml(X)i1,i2,: := ml(Xi1,i2,:),
l 2 [3]. Second, matrix multiplication is performed between matching features, i.e., W:,:,j := m1(X):,:,j ·
m2(X):,:,j , j 2 [b]. The output of the block is the tensor (m3(X),W). We start with showing our basic
requirement from GNN, namely invariance:

Lemma 9. The model F described above is invariant, i.e., F (g ·B) = F (B), for all g 2 Sn, and B.

Proof. Note that matrix multiplication is equivariant: for two matrices A,B 2 Rn⇥n and g 2 Sn one has
(g · A) · (g · B) = g · (A · B). This makes the basic building block Bi equivariant, and consequently the
model F invariant, i.e., F (g ·B) = F (B).

Before we prove the 3-WL power for this model, let us provide an intuition as to why matrix multiplication
improves expressiveness. Let us show matrix multiplication allows this model to distinguish between the
two graphs in Figure 31, which are 1-WL indistinguishable. The input tensor B representing a graph G holds
the adjacency matrix at the last channel A := B:,:,e+1. We can build a network with 2 blocks computing
A3 and then take the trace of this matrix (using the invariant layer h). Remember that the d-th power of
the adjacency matrix computes the number of d-paths between vertices; in particular tr(A3) computes the
number of cycles of length 3. Counting shows the upper graph in Figure 31 has 0 such cycles while the
bottom graph has 12. The main result of this section is:

Theorem 12. Given two graphs G = (V,E, d), G0 = (V 0, E0, d0) that can be distinguished by the 3-WL
graph isomorphism test, there exists a network F ((65)) so that F (G) 6= F (G0). On the other direction for
every two isomorphic graphs G ⇠= G0 and F ((65)), F (G) = F (G0).

The full proof is provided in the Section 9.12. Here we outline the main idea of the proof. The second part
of this theorem is already shown in Lemma 9. To prove the first part, namely that the model in (65) has

77

Doctoral Dissertation Haggai Maron August 2019

3-WL expressiveness, we show it can implement the 2-FWL algorithm, that is known to be equivalent to
3-WL (see Section 9.3.2). As before, the challenge is in implementing the neighborhood multisets as used
in the 2-FWL algorithm. That is, given an input tensor B 2 Rn

2⇥a we would like to compute an output
tensor C 2 Rn

2⇥b where Ci1,i2,: 2 Rb represents a color matching the multiset {{(Bj,i2,:, Bi1,j,:) | j 2 [n]}}.
As before, we use the multiset representation introduced in section 9.4. Consider the matrix X 2 Rn⇥2a

defined by
Xj,: = (Bj,i2,:, Bi1,j,:), j 2 [n]. (66)

Our goal is to compute an output tensor W 2 Rn
2⇥b, where Wi1,i2,: = u(X).

Consider the multi-index set
�
↵ | ↵ 2 [n]2a, |↵| n

of cardinality b =

�
n+2a�1
2a�1

�
, and write it in the

form {(�l,�l) | �,� 2 [n]a, |�l|+ |�l| n, l 2 b}.
Now define polynomial maps ⌧1, ⌧2 : Ra

! Rb by ⌧1(x) = (x�l | l 2 [b]), and ⌧2(x) = (x�l | l 2

[b]). We apply ⌧1 to the features of B, namely Yi1,i2,l := ⌧1(B)i1,i2,l = (Bi1,i2,:)
�l ; similarly, Zi1,i2,l :=

⌧2(B)i1,i2,l = (Bi1,i2,:)
�l . Now,

Wi1,i2,l := (Z:,:,l · Y:,:,l)i1,i2 =
nX

j=1

Zi1,j,lYj,i2,l =
nX

j=1

B�l
j,i2,:

B�l
i1,j,:

=
nX

j=1

(Bj,i2,:, Bi1,j,:)
(�l,�l),

hence Wi1,i2,: = u(X), where X is defined in (66). To get an implementation with the model in (65) we
need to replace ⌧1, ⌧2 with MLPs. We use the universal approximation theorem to that end (details are
Section 9.12).
To conclude, each update step of the 2-FWL algorithm is implemented in the form of a block Bi applying
m1,m2 to the input tensor B, followed by matrix multiplication of matching features, W = m1(B)·m2(B).
Since (63) requires pairing the multiset with the input color of each k-tuple, we take m3 to be identity and
get (B,W) as the block output.

Generalization to k-FWL. One possible extension is to add a generalized matrix multiplication to k-order
networks to make them as expressive as k-FWL and hence (k+1)-WL. Generalized matrix multiplication is
defined as follows. Given A1, . . . , Ak

2 Rn
k , then (�k

i=1A
i)i =

P
n

j=1A
1
j,i2,...,ik

A2
i1,j,...,ik

· · ·Ak

i1,...,ik�1,j
.

9.7 Experiments
Implementation details. We implemented the GNN model as described in Section 9.6 (see (65)) using the
TensorFlow framework [1]. We used three identical blocks B1, B2, B3, where in each block Bi : Rn

2⇥a
!

Rn
2⇥b we took m3(x) = x to be the identity (i.e., m3 acts as a skip connection, similar to its role in the

proof of Theorem 12); m1,m2 : Ra
! Rb are chosen as d layer MLP with hidden layers of b features.

After each block Bi we also added a single layer MLP m4 : Rb+a
! Rb. Note that although this fourth

MLP is not described in the model in Section 9.6 it clearly does not decrease (nor increase) the theoretical
expressiveness of the model; we found it efficient for coding as it reduces the parameters of the model. For
the first block, B1, a = e + 1, where for the other blocks b = a. The MLPs are implemented with 1 ⇥ 1
convolutions. Parameter search was conducted on learning rate and learning rate decay, as detailed below.
We have experimented with two network suffixes adopted from previous papers: (i) The suffix used in [158]
that consists of an invariant max pooling (diagonal and off-diagonal) followed by a three Fully Connected
(FC) with hidden units’ sizes of (512, 256,#classes); (ii) the suffix used in [256] adapted to our network:
we apply the invariant max layer from [158] to the output of every block followed by a single fully connected
layer to #classes. These outputs are then summed together and used as the network output on which the
loss function is defined.

78

Doctoral Dissertation Haggai Maron August 2019

Table 11: Graph Classification Results on the datasets from [257]

dataset MUTAG PTC PROTEINS NCI1 NCI109 COLLAB IMDB-B IMDB-M

size 188 344 1113 4110 4127 5000 1000 1500
classes 2 2 2 2 2 3 2 3
avg node # 17.9 25.5 39.1 29.8 29.6 74.4 19.7 13

Results

GK [218] 81.39±1.7 55.65±0.5 71.39±0.3 62.49±0.3 62.35±0.3 NA NA NA
RW [239] 79.17±2.1 55.91±0.3 59.57±0.1 > 3 days NA NA NA NA
PK [179] 76±2.7 59.5±2.4 73.68±0.7 82.54±0.5 NA NA NA NA
WL [219] 84.11±1.9 57.97±2.5 74.68±0.5 84.46±0.5 85.12±0.3 NA NA NA
FGSD [237] 92.12 62.80 73.42 79.80 78.84 80.02 73.62 52.41
AWE-DD [115] NA NA NA NA NA 73.93±1.9 74.45 ± 5.8 51.54 ±3.6
AWE-FB [115] 87.87±9.7 NA NA NA NA 70.99 ± 1.4 73.13 ±3.2 51.58 ± 4.6

DGCNN [268] 85.83±1.7 58.59±2.5 75.54±0.9 74.44±0.5 NA 73.76±0.5 70.03±0.9 47.83±0.9
PSCN [181](k=10) 88.95±4.4 62.29±5.7 75±2.5 76.34±1.7 NA 72.6±2.2 71±2.3 45.23±2.8
DCNN [13] NA NA 61.29±1.6 56.61± 1.0 NA 52.11±0.7 49.06±1.4 33.49±1.4
ECC [221] 76.11 NA NA 76.82 75.03 NA NA NA
DGK [257] 87.44±2.7 60.08±2.6 75.68±0.5 80.31±0.5 80.32±0.3 73.09±0.3 66.96±0.6 44.55±0.5
DiffPool [262] NA NA 78.1 NA NA 75.5 NA NA
CCN [132] 91.64±7.2 70.62±7.0 NA 76.27±4.1 75.54±3.4 NA NA NA
Invariant Graph Networks [158] 83.89±12.95 58.53±6.86 76.58±5.49 74.33±2.71 72.82±1.45 78.36±2.47 72.0±5.54 48.73±3.41
GIN [256] 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 NA 80.2±1.9 75.1±5.1 52.3±2.8
1-2-3 GNN [175] 86.1± 60.9± 75.5± 76.2± NA NA 74.2± 49.5±
Ours 1 90.55±8.7 66.17±6.54 77.2±4.73 83.19±1.11 81.84±1.85 80.16±1.11 72.6±4.9 50±3.15
Ours 2 88.88±7.4 64.7±7.46 76.39±5.03 81.21±2.14 81.77±1.26 81.38±1.42 72.2±4.26 44.73±7.89
Ours 3 89.44±8.05 62.94±6.96 76.66±5.59 80.97±1.91 82.23±1.42 80.68±1.71 73±5.77 50.46±3.59
Rank 3rd 2nd 2nd 2nd 2nd 1st 6th 5th

Datasets. We evaluated our network on two different tasks: Graph classification and graph regression. For
classification, we tested our method on eight real-world graph datasets from [257]: three datasets consist
of social network graphs, and the other five datasets come from bioinformatics and represent chemical
compounds or protein structures. Each graph is represented by an adjacency matrix and possibly categorical
node features (for the bioinformatics datasets). For the regression task, we conducted an experiment on
a standard graph learning benchmark called the QM9 dataset [199, 251]. It is composed of 134K small
organic molecules (sizes vary from 4 to 29 atoms). Each molecule is represented by an adjacency matrix,
a distance matrix (between atoms), categorical data on the edges, and node features; the data was obtained
from the pytorch-geometric library [75]. The task is to predict 12 real valued physical quantities for each
molecule.

Graph classification results. We follow the standard 10-fold cross validation protocol and splits from
[268] and report our results according to the protocol described in [256], namely the best averaged accuracy
across the 10-folds. Parameter search was conducted on a fixed random 90%-10% split: learning rate
in
�
5 · 10�5, 10�4, 5 · 10�4, 10�3

; learning rate decay in [0.5, 1] every 20 epochs. We have tested three

architectures: (1) b = 400, d = 2, and suffix (ii); (2) b = 400, d = 2, and suffix (i); and (3) b = 256, d = 3,
and suffix (ii). (See above for definitions of b, d and suffix). Table 11 presents a summary of the results (top
part - non deep learning methods). The last row presents our ranking compared to all previous methods;
note that we have scored in the top 3 methods in 6 out of 8 datasets.

Graph regression results. The data is randomly split into 80% train, 10% validation and 10% test. We
have conducted the same parameter search as in the previous experiment on the validation set. We have used
the network (2) from classification experiment, i.e., b = 400, d = 2, and suffix (i), with an absolute error
loss adapted to the regression task. Test results are according to the best validation error. We have tried two
different settings: (1) training a single network to predict all the output quantities together and (2) training
a different network for each quantity. Table 12 compares the mean absolute error of our method with three

79

Doctoral Dissertation Haggai Maron August 2019

Table 12: Regression, the QM9 dataset.

Target DTNN MPNN 123-gnn Ours 1 Ours 2

µ 0.244 0.358 0.476 0.231 0.0934
↵ 0.95 0.89 0.27 0.382 0.318
✏homo 0.00388 0.00541 0.00337 0.00276 0.00174
✏lumo 0.00512 0.00623 0.00351 0.00287 0.0021
�✏ 0.0112 0.0066 0.0048 0.00406 0.0029
hR2

i 17 28.5 22.9 16.07 3.78
ZPV E 0.00172 0.00216 0.00019 0.00064 0.000399
U0 2.43 2.05 0.0427 0.234 0.022
U 2.43 2 0.111 0.234 0.0504
H 2.43 2.02 0.0419 0.229 0.0294
G 2.43 2.02 0.0469 0.238 0.024
Cv 0.27 0.42 0.0944 0.184 0.144

other methods: 123-gnn [175] and [251]; results of all previous work were taken from [175]. Note that our
method achieves the lowest error on 5 out of the 12 quantities when using a single network, and the lowest
error on 9 out of the 12 quantities in case each quantity is predicted by an independent network.

0 50 100 150
0.5

0.6

0.7

0.8

0.9

Validation

0 50 100 150
0.5

0.6

0.7

0.8

0.9

Train

MP+LIN
LIN
MLP

1.0

1.0

MP

A
cc

ur
ac

y
(%

)

of epochs

A
cc

ur
ac

y
(%

)

Equivariant layer evaluation. The model in Section 9.6 does not incorporate
all equivariant linear layers as characterized in [158]. It is therefore of interest
to compare this model to models richer in linear equivariant layers, as well as a
simple MLP baseline (i.e., without matrix multiplication). We performed such
an experiment on the NCI1 dataset [257] comparing: (i) our suggested model,
denoted Matrix Product (MP); (ii) matrix product + full linear basis from [158]
(MP+LIN); (iii) only full linear basis (LIN); and (iv) MLP applied to the feature
dimension.
Due to the memory limitation in [158] we used the same feature depths of b1 =
32, b2 = 64, b3 = 256, and d = 2. The inset shows the performance of all
methods on both training and validation sets, where we performed a parameter
search on the learning rate (as above) for a fixed decay rate of 0.75 every 20
epochs. Although all methods (excluding MLP) are able to achieve a zero training error, the (MP) and
(MP+LIN) enjoy better generalization than the linear basis of [158]. Note that (MP) and (MP+LIN) are
comparable, however (MP) is considerably more efficient.

9.8 Conclusions
We explored two models for graph neural networks that possess superior graph distinction abilities compared
to existing models. First, we proved that k-order invariant networks offer a hierarchy of neural networks
that parallels the distinction power of the k-WL tests. This model has lesser practical interest due to the
high dimensional tensors it uses. Second, we suggested a simple GNN model consisting of only MLPs
augmented with matrix multiplication and proved it achieves 3-WL expressiveness. This model operates
on input tensors of size n2 and therefore useful for problems with dense edge data. The downside is that
its complexity is still quadratic, worse than message passing type methods. An interesting future work is
to search for more efficient GNN models with high expressiveness. Another interesting research venue is
quantifying the generalization ability of these models.

80

Doctoral Dissertation Haggai Maron August 2019

9.9 Proof of Proposition 11

Proof. First, if X 0 = g · X , then p↵(X) = p↵(X 0) for all ↵ and therefore u(X) = u(X 0). In the other
direction assume by way of contradiction that u(X) = u(X 0) and g ·X 6= X 0, for all g 2 Sn. That is, X
and X 0 represent different multisets. Let [X] = {g ·X | g 2 Sn} denote the orbit of X under the action of
Sn; similarly denote [X 0]. Let K ⇢ Rn⇥a be a compact set containing [X], [X 0], where [X] \ [X 0] = ; by
assumption.
By the Stone–Weierstrass Theorem applied to the algebra of continuous functions C(K,R) there exists a
polynomial f so that f |[X] � 1 and f |[X0] 0. Consider the polynomial

q(X) =
1

n!

X

g2Sn

f(g ·X).

By construction q(g ·X) = q(X), for all g 2 Sn. Therefore q is a multi-symmetric polynomial. Therefore,
q(X) = r(u(X)) for some polynomial r. On the other hand,

1 q(X) = r(u(X)) = r(u(X 0)) = q(X 0) 0,

where we used the assumption that u(X) = u(X 0). We arrive at a contradiction.

9.10 Proof of equivairance of WL update step

Consider the formal tensor Bj of dimension nk with multisets as entries:

Bj

i
= {{C l�1

j
| j 2 Nj(i)}}. (67)

Then the k-WL update step ((62)) can be written as

C l

i = enc
⇣
C l�1
i

, B1
i , B

2
i , . . . , B

k

i

⌘
. (68)

To show equivariance, it is enough to show that each entry of the r.h.s. tuple is equivariant. For its first entry:
(g · C l�1)i = C l�1

g�1(i). For the other entries, consider w.l.o.g. Bj

i
:

{{(g · C l�1)j | j 2 Nj(i)}} = {{C l�1
g�1(j) | j 2 Nj(i)}} = {{C l�1

j
| j 2 Nj(g

�1(i))}} = Bj

g�1(i).

We get that feeding k-WL update rule with g · C l�1 we get as output C l

g�1(i) = (g · C l)i.

9.11 Proof of Theorem 11

Proof. We will prove a slightly stronger claim: Assume we are given some finite set of graphs. For example,
we can think of all combinatorial graphs (i.e., graphs represented by binary adjacency matrices) of n vertices
. Our task is to build a k-order network F that assigns different output F (G) 6= F (G0) whenever G,G0 are
non-isomorphic graphs distinguishable by the k-WL test.
Our construction of F has three main steps. First in Section 9.11.1 we implement the initialization step. Sec-
ond, Section 9.11.2 we implement the coloring update rules of the k-WL. Lastly, we implement a histogram
calculation providing different features to k-WL distinguishable graphs in the collection.

81

Doctoral Dissertation Haggai Maron August 2019

9.11.1 Input and Initialization

Input. The input to the network can be seen as a tensor of the form B 2 Rn
2⇥(e+1) encoding an input

graph G = (V,E, d), as follows. The last channel of B, namely B:,:,e+1 (’:’ stands for all possible values
[n]) encodes the adjacency matrix of G according to E. The first e channels B:,:,1:e are zero outside the
diagonal, and Bi,i,1:e = d(vi) 2 Re is the color of vertex vi 2 V . Our assumption of finite graph collection
means the set ⌦ ⇢ Rn

2⇥(e+1) of possible input tensors B is finite as well. Next we describe the different
parts of k-WL implementation with k-order network. For brevity, we will denote by B 2 Rn

k⇥a the input
to each part and by C 2 Rn

k⇥b the output.

Initialization. We start with implementing the initialization of k-WL, namely computing a coloring rep-
resenting the isomorphism type of each k-tuple. Our first step is to define a linear equivariant operator that
extracts the sub-tensor corresponding to each multi-index i: let L : Rn

2⇥(e+1)
! Rn

k⇥k
2⇥(e+2) be the

linear operator defined by

L(X)i,r,s,w = Xir,is,w, w 2 [e+ 1]

L(X)i,r,s,e+2 =

(
1 ir = is

0 otherwise

for i 2 [n]k, r, s 2 [k].
L is equivariant with respect to the permutation action. Indeed, for w 2 [e+ 1],

(g · L(X))i,r,s,w = L(X)g�1(i),r,s,w = Xg�1(ir),g�1(is),w = (g ·X)ir,is,w = L(g ·X)i,r,s,w.

For w = e+ 2 we have

(g · L(X))i,r,s,w = L(X)g�1(i),r,s,w =

(
1 g�1(ir) = g�1(is)

0 otherwise
=

(
1 ir = is

0 otherwise
= L(g ·X)i,r,s,w.

Since L is linear and equivariant it can be represented as a single linear layer in a k-order network. Note
that L(B)i,:,:,1:(e+1) contains the sub-tensor of B defined by the k-tuple of vertices (vi1 , . . . , vik), and
L(B)i,:,:,e+2 represents the equality pattern of the k-tuple i, which is equivalent to the equality pattern
of the k-tuple of vertices (vi1 , . . . , vik). Hence, L(B)i,:,:,: represents the isomorphism type of the k-tuple of
vertices (vi1 , . . . , vik). The first layer of our construction is therefore C = L(B).

9.11.2 k-WL update step

We next implement (62). We achieve that in 3 steps. As before let B 2 Rn
k⇥a be the input tensor to the the

current k-WL step.
First, apply the polynomial function ⌧ : Ra

! Rb, b =
�
n+a�1
a�1

�
entrywise to B, where ⌧ is defined by

⌧(x) = (x↵)|↵|n (note that b is the number of multi-indices ↵ such that |↵| n). This gives Y 2 Rn
k⇥b

where Yi,: = ⌧(Bi,:) 2 Rb.
Second, apply the linear operator

Cj

i,r
:= Lj(Y)i,r =

nX

i0=1

Yi1,··· ,ij�1,i
0,ij+1,...,ik,r

, i 2 [n]k, r 2 [b].

82

Doctoral Dissertation Haggai Maron August 2019

Lj is equivariant with respect to the permutation action. Indeed, Lj(g · Y)i,r =

nX

i0=1

(g · Y)i1,··· ,ij�1,i
0,ij+1,...,r =

nX

i0=1

Yg�1(i1)··· ,g�1(ij�1),i0,g�1(ij+1),...,r = Lj(Y)g�1(i),r = (g · Lj(Y))i,r.

Now, note that

Cj

i,: = Lj(Y)i,: =
nX

i0=1

⌧(Bi1,··· ,ij�1,i
0,ij+1,...,ik,:) =

X

j2Nj(i)

⌧(Bj,:) = u(X),

where X = Bi1,...,ij�1,:,ij+1,...,ik,: as desired.
Third, the k-WL update step is the concatenation: (B,C1, . . . , Ck).
To finish this part we need to replace the polynomial function ⌧ with an MLP m : Ra

! Rb. Since there
is a finite set of input tensors ⌦, there could be only a finite set ⌥ of colors in Ra in the input tensors to
every update step. Using MLP universality [59, 110] , let m be an MLP so that k⌧(x)�m(x)k < ✏ for
all possible colors x 2 ⌥. We choose ✏ sufficiently small so that for all possible X = (Bj | j 2 Nj(i)) 2
Rn⇥a, i 2 [n]k, j 2 [k], v(X) =

P
i2[n]m(xi) satisfies the same properties as u(X) =

P
i2[n] ⌧(xi) (see

Proposition 11), namely v(X) = v(X 0) iff 9g 2 Sn so that X 0 = g ·X . Note that the ’if’ direction is always
true by the invariance of the sum operator to permutations of the summands. The ’only if’ direction is true
for sufficiently small ✏. Indeed, kv(X)� u(X)k nmaxi2[n] km(xi)� ⌧(xi)k n✏, since xi 2 ⌥. Since
this error can be made arbitrary small, u is injective and there is a finite set of possible X then v can be
made injective by sufficiently small ✏ > 0.

9.11.3 Histogram computation

So far we have shown we can construct a k-order equivariant network H = Ld���· · ·���L1 implementing d
steps of the k-WL algorithm. We take d sufficiently large to discriminate the graphs in our collection as much
as k-WL is able to. Now, when feeding an input graph this equivariant network outputs H(B) 2 Rn

k⇥a

which matches a color H(B)i,: (i.e., vector in Ra) to each k-tuple i 2 [n]k.
To produce the final network we need to calculate a feature vector per graph that represents the histogram
of its k-tuples’ colors H(B). As before, since we have a finite set of graphs, the set of colors in H(B) is
finite; let b denote this number of colors. Let m : Ra

! Rb be an MLP mapping each color x 2 Ra to the
one-hot vector in Rb representing this color. Applying m entrywise after H , namely m(H(B)), followed
by the summing invariant operator h : Rn

k⇥b
! Rb defined by h(Y)j =

P
i2[n]k Yi,j , j 2 [b] provides the

desired histogram. Our final k-order invariant network is

F = h �m � Ld � � � · · · � � � L1.

9.12 Proof of Theorem 12

Proof. The second claim is proved in Lemma 9. Next we construct a network as in (65) distinguishing a
pair of graphs that are 3-WL distinguishable. As before, we will construct the network distinguishing any
finite set of graphs of size n. That is, we consider a finite set of input tensors ⌦ ⇢ Rn

2⇥(e+2).

83

Doctoral Dissertation Haggai Maron August 2019

Input. We assume our input tensors have the form B 2 Rn
2⇥(e+2). The first e+ 1 channels are as before,

namely encode vertex colors (features) and adjacency information. The e+ 2 channel is simply taken to be
the identity matrix, that is B:,:,e+2 = Id.

Initialization. First, we need to implement the 2-FWL initialization (see Section 9.3.2). Namely, given an
input tensor B 2 Rn

2⇥(e+1) construct a tensor that colors 2-tuples according to their isomorphism type. In
this case the isomorphism type is defined by the colors of the two nodes and whether they are connected or
not. Let A := B:,:,e+1 denote the adjacency matrix, and Y := B:,:,1:e the input vertex colors. Construct the
tensor C 2 Rn

2⇥(4e+1) defined by the concatenation of the following colors matrices into one tensor:

A · Y:,:,j , (11T �A) · Y:,:,j , Y:,:,j ·A, Y:,:,j · (11
T
�A), j 2 [e],

and B:,:,e+2. Note that Ci1,i2,: encodes the isomorphism type of the 2-tuple sub-graph defined by vi1 , vi2 2

V , since each entry of C holds a concatenation of the node colors times the adjacency matrix of the graph
(A) and the adjacency matrix of the complement graph (11T �A); the last channel also contains an indicator
if vi1 = vi2 . Note that the transformation B 7! C can be implemented with a single block B1.

2-FWL update step. Next we implement a 2-FWL update step, (63), which for k = 2 takes the form Ci =

enc
⇣
Bi,
nn
(Bj,i2 , Bi1,j)

��� j 2 [n]
oo ⌘

, i = (i1, i2), and the input tensor B 2 Rn
2⇥a. To implement this we

will need to compute a tensor Y , where the coloring Yi encodes the multiset
nn
(Bj,i2,:, Bi1,j,:)

��� j 2 [n]
oo

.

As done before, we use the multiset representation described in section 9.4. Consider the matrix X 2 Rn⇥2a

defined by
Xj,: = (Bj,i2,:, Bi1,j,:), j 2 [n]. (69)

Our goal is to compute an output tensor W 2 Rn
2⇥b, where Wi1,i2,: = u(X).

Consider the multi-index set
�
↵ | ↵ 2 [n]2a, |↵| n

of cardinality b =

�
n+2a�1
2a�1

�
, and write it in the

form {(�l,�l) | �,� 2 [n]a, |�l|+ |�l| n, l 2 b}. Now define polynomial maps ⌧1, ⌧2 : Ra
! Rb by

⌧1(x) = (x�l | l 2 [b]), and ⌧2(x) = (x�l | l 2 [b]). We apply ⌧1 to the features of B, namely Yi1,i2,l :=
⌧1(B)i1,i2,l = (Bi1,i2,:)

�l ; similarly, Zi1,i2,l := ⌧2(B)i1,i2,l = (Bi1,i2,:)
�l . Now,

Wi1,i2,l := (Z:,:,l · Y:,:,l)i1,i2 =
nX

j=1

Zi1,j,lYj,i2,l =
nX

j=1

⌧1(B)j,i2,l ⌧2(B)i1,j,l

=
nX

j=1

B�l
j,i2,:

B�l
i1,j,:

=
nX

j=1

(Bj,i2,:, Bi1,j,:)
(�l,�l),

hence Wi1,i2,: = u(X), where X is defined in (69).
To implement this in the network we need to replace ⌧i with MLPs mi, i = 1, 2. That is,

Wi1,i2,l :=
nX

j=1

m1(B)j,i2,l m2(B)i1,j,l = v(X), (70)

where X 2 Rn⇥2a is defined in (69).
As before, since input tensors belong to a finite set ⌦ ⇢ Rn

2⇥(e+1), so are all possible multisets X and all
colors,⌥, produced by any part of the network. Similarly to the proof of Theorem 11 we can take (using the
universal approximation theorem) MLPs m1,m2 so that maxx2⌥,i=1,2 k⌧i(x)�mi(x)k < ✏. We choose

84

Doctoral Dissertation Haggai Maron August 2019

✏ to be sufficiently small so that the map v(X) defined in (70) maintains the injective property of u (see
Proposition 11): It discriminates between X,X 0 not representing the same multiset.
Lastly, note that taking m3 to be the identity transformation and concatenating (B,m1(B) · m2(B)) con-
cludes the implementation of the 2-FWL update step. The computation of the color histogram can be done
as in the proof of Theorem 11.

85

Doctoral Dissertation Haggai Maron August 2019

Part II

Relaxations of matching problems

10 An efficient SDP relaxation of the point cloud registration problem

This section is based on [160].

10.1 Introduction

(a) (d)(c)(b) (e)

Figure 33: Initializing high-dimensional ICP for non-rigid registration of two human surfaces using different methods:
(a) input shape; (b) random initialization; (c) initialization using Wave Kernel Signatures (four examples are shown
to its left); (d) initialization with segment correspondence (four examples are shown to its left). The initialization is
crucial for good matching; in (e) we show the result of initialization using PM-SDP which provides comparable result
to (d).

Registration of point sets is a central problem in computer graphics with many applications including shape
analysis, shape retrieval, statistical shape inference, and shape reconstruction.
Among the different formulations of the point set registration problem, the Procrustes matching (PM) for-
mulation is very common: Given two d-dimensional point sets of n points each, P,Q 2 Rd⇥n, which are
neither aligned nor consistently labeled, the task is to find a linear isometry (i.e., an orthogonal transforma-
tion) R 2 O(d) and a permutation X 2 ⇧n minimizing the distance between the point sets:

d(P,Q) = min
X,R

kRP �QXk
2
F

(71a)

s.t. X 2 ⇧n (71b)
R 2 O(d) (71c)

Procrustes matching arises naturally in two and three dimensions (d = 2, 3) for rigid matching problems.
Non-rigid matching problems are also often formulated in this way, wherein linear isometries in higher
dimension (d � 3) approximate non-rigid isometries of the shapes; this idea is advocated in Functional
Maps [186] where the Laplace-Beltrami eigenfunctions are used for the high-dimensional embedding.
The optimization problem (71) is non-convex and globally optimizing it is difficult. In fact, even the sub-
problem of finding an exact solution for PM when such a solution exists (i.e., when d(P,Q) = 0) is difficult.
It can be shown that this subproblem can be solved in polynomial time iff there is a polynomial time algo-
rithm for the exact graph matching problem. The latter is a well researched problem for which no polynomial
time algorithm is known.

86

Doctoral Dissertation Haggai Maron August 2019

The iterative closest point (ICP) [29] algorithm is a popular algorithm for locally minimizing (71), based on
the fact that when either R or X are held constant, (71) can be solved globally. As we will demonstrate,
(71) has a vast amount of local minima, so that the success of ICP depends heavily on a good initialization.
Previous methods relied on shape features/signatures and/or prior knowledge to initialize ICP. For exam-
ple, Figure 33 depicts different initializations for solving (71) in the context of Functional Maps for surface
matching; a source model (a) is matched to a target model using different initialization for R: (b) shows
results achieved from random initialization; (c) demonstrates an initialization of R using Wave Kernel Sig-
natures [16]; and (d) demonstrates initialization using matched segments. Both (c) and (d) are common
initializations used in Functional Maps papers [186, 191]. In this case, all initializations aside from the seg-
mentation correspondence resulted in suboptimal matching (in (c), for instance, the left hand of the model
in (a) is incorrectly matched to the chest).
The goal of this work is to approximate the global minimum of (71). To accomplish this, we present a
novel convex relaxation of PM using semidefinite programming (SDP), which we name PM-SDP. Standard
SDP relaxations are known to give very accurate approximations, at the price of high time complexity.
For example, [124] give an extremely accurate relaxation for the quadratic matching problem, but their
algorithm can only run on a handful of points. We formulate a similar SDP relaxation for PM, and use
results on semidefinite completion problems to significantly reduce the size of the semidefinite constraints
while remaining equivalent to the original relaxation. As a result, our relaxation has significantly improved
time complexity.
Our relaxation is applicable to point sets consisting of around 100 points of a reasonably high dimension
(15-20). Applying our algorithm to initialize the Functional Maps ICP as shown in Figure 33(e) provides
results which compare favorably with matchings achieved with random and WKS initializations, and are
comparable to results achieved with matched segmentation initialization.
We demonstrate the accuracy of the suggested relaxation both theoretically and experimentally. We prove
that for problems without noise, the relaxation returns a correct global minimum of PM. Up to technical
details, this analysis is valid for asymmetric shapes, as well as shapes with bilateral symmetries. The latter
include many important instances of the shape matching problem, such as matching human bodies. We also
show our algorithm achieves the global optimum for perturbed asymmetric shapes. Experimentally we show
that at low noise levels our algorithm still returns the global minimum, and at high noise levels it returns a
close-to-optimal local minimum.
We demonstrate the strength and applicability of the PM-SDP relaxation by achieving state of the art results
on standard non-rigid shape matching benchmarks such as SCAPE [10] and the more recent FAUST [30].
We also demonstrate applications to collective matching and biological shape classification.

10.2 Previous work
Point cloud registration is a basic building block in computer graphics and geometry processing. We
mention works that are most relevant to this work. For detailed survey see [230].
For input shapes or point clouds which are close to being aligned, the ICP algorithm and its many variants
[209] are a popular choice. For shapes that are not roughly aligned the ICP algorithm can be easily stuck in
local minimum. A widely used method for matching shapes in a general position is RANSAC [77], which
exhaustively samples the space of possible transformations. Being essentially a brute-force algorithm, its
drawback is the high complexity which results in poor scalability to higher dimensions.
Another way to deal with shapes that are not roughly aligned is to try to find a good initialization for ICP.
Representative works in this direction are the works of [88, 258] which use combinatorial optimization
techniques in order to find the optimal solution in 3D.

87

Doctoral Dissertation Haggai Maron August 2019

Non-rigid shape matching is a central task in geometry processing. We discuss relevant work and refer
to relevant surveys for more details [243, 234, 230]. One approach is to formulate the non-rigid problem as
a version of the quadratic assignment problem called quadratic matching. [167, 38] suggest to minimize the
Gromov-Hausdorff distance where [38] also introduce the generalized multidimensional scaling variant on
point metric spaces; [143, 25] relax the quadratic matching problem using linear programming and spectral
techniques; [124] suggest a convex SDP relaxation to the quadratic matching problem; and [50] suggest a
linear programming relaxation solved using MRF (Markov Random Fields) techniques.
Another approach is to restrict the mapping search space to a smaller, more tractable space such as: low
dimensional deformation space [41], conformal mappings [148, 266, 127]; or isometries [187, 231]. Some
works try to adapt the 3D ICP algorithm to the non-rigid case [145], whereby typically a deformation model
is chosen (e.g., piecewise affine) and the algorithm iterates between finding correspondences and solving for
the optimal deformation.
Non-rigid shape matching can also be tackled using supervised machine learning techniques, where typically
the algorithm is focused on a specific type of data. For instance, [273, 245] train a model that matches human
bodies.
The most relevant methods to this work pose the non-rigid shape matching problem as a high dimensional
rigid shape matching problem [116, 185, 186, 191]. These methods map each point of the input point
cloud to a vector containing the values of the eigen-functions of the Laplace-Beltrami operator [210]. The
central observation is that if the input shapes are isometric, the intrinsic isometry between them becomes
an extrinsic isometry in the high dimensional space [185]. This opens the door for using rigid matching
algorithms such as ICP in the context of the more complicated non-rigid matching problem. The problem is
that finding a good initialization is difficult for high dimensional problems. Current methods partly employ
prior knowledge, such as correspondence between pre-computed segments, to initialize the ICP algorithm
[186].

Procrustes analysis is a tool used to perform statistical study of shapes by canceling transformations that
are not shape-altering [122]. It has many applications in various fields of science [94] and in particular
anatomical shape analysis and morphometrics [169, 34]. There are many variants to the Procrustes prob-
lem, maybe the most general is the one addressed in this work - PM, for which no closed-form solution is
known [94]. To our knowledge, we provide the first closed-form convex formulation guaranteeing a globally
optimal solution for the exact and near-exact cases (under mild assumptions).

Semidefinite relaxation and polynomial optimization. Convex relaxations of quadratic optimization
problems are often (e.g., [192, 152]) preformed by replacing quadratic terms with new variables. All
quadratic terms then become linear, and a convex semidefinite constraint is added to couple between the
original variables and the new variables. A significant drawback of these relaxations is that they are compu-
tationally tractable only for very small polynomial problems. [83, 242] show that for problems with certain
structure, a positive semidefinite constraint on a large matrix can be replaced by constraining certain princi-
pal submatrices to be positive semidefinite, resulting in an equivalent problem with significantly improved
time complexity. In this section we devise a quadratic formulation of PM which has this structure, and as a
result obtain a relaxation which is tractable for medium sized problems.

10.3 Approach and Formulation

We present our convex relaxation of PM. We first discuss the general quadratic optimization problem and
present a novel strategy for replacing its “standard” time consuming SDP relaxations with an equivalent, but

88

Doctoral Dissertation Haggai Maron August 2019

significantly more efficient SDP relaxation. In this context, we then instantiate our relaxation for the PM
problem.

Full SDP relaxation of quadratic problems. Quadratic optimization problems are problems of the form

min
x2RN

f0(x) (72a)

s.t. fs(x) = 0, s = 1, . . . , S (72b)
ft(x) � 0, t = S + 1 . . . T (72c)

where fi are quadratic multivariate polynomials.
A typical relaxation procedure includes two steps (see [152] for a survey on SDP quadratic relaxations):
First, the quadratic polynomials fi are linearized by introducing new variables Yij , 1 i, j N , which
replace quadratic monomials xixj , so that fj(x) becomes a linear polynomial in the variables x, Y denoted
L[fj](x, Y). This gives an equivalent formulation of (72):

min
x,Y

L [f0] (x, Y) (73a)

s.t. L [fs] (x, Y) = 0, s = 1 . . . S (73b)
L [ft] (x, Y) � 0, t = S + 1 . . . T (73c)

Y = xxT (73d)

With the exception of constraint (73d), Problem (73) is a convex problem (in fact a linear program). There-
fore, the second step in this relaxation procedure is replacing (73d) with a convex constraint. The convex
hull of the set defined by (73d) is the set defined by the convex constraint Y ⌫ xxT , which is equivalent to
the semidefinite constraint

1 xT

x Y

�
⌫ 0. (74)

A natural relaxation of (73) is therefore given by replacing (73d) with (74). [270] and more recently [124]
used this approach to relax the quadratic matching and quadratic assignment problems. The obtained re-
laxation is significantly more accurate than prevalent relaxations for quadratic matching, but its scalability
is poor; in fact, it cannot handle more than a handful of points to be matched, completely hindering some
applications.

Efficient SDP relaxation. The key to a useful and efficient relaxation of (72) and consequently our prob-
lem (71) is to reduce the dimension of the semi-definite constraint (74) which is the main factor determining
time efficiency of the semidefinite program.
To obtain a more efficient SDP relaxation, we make the observation that for some problems not all terms in
the matrix xxT appear in the polynomials fj . This is, for example, the case in the PM problem, as will soon
be shown. In such cases, we can find a collection J of subsets of {1, . . . , N} so that all polynomials fj
include only expressions from xJxTJ , J 2 J . An equivalent formulation for (73) can therefore be obtained
by replacing (73d) with YJ = xJxTJ , for all J 2 J . In turn, replacing these with the convex constraints

1 xT

J

xJ YJ

�
⌫ 0, J 2 J (75)

we obtain a convex relaxation for (72). If all subsets J 2 J satisfy |J | ⌧ N , the obtained relaxation is
considerably more efficient than the original (full) relaxation.

89

Doctoral Dissertation Haggai Maron August 2019

There is no unique way to apply this more efficient relaxation; a given instance of a quadratic optimization
problem may have several different possible decompositions J . Those that use small semidefinite con-
straints will be more efficient, but not necessarily as accurate as those using larger semidefinite constraints;
the latter, however, can quickly become intractable for certain problems. Nevertheless, if J is chosen so
that it satisfies the chordality condition we will soon describe, the obtained relaxation is in fact equivalent to
the full relaxation.
In general, any solution for the full relaxation also satisfies (75). For equivalency, we need to ensure that a
solution for the efficient relaxation (75) can always be completed to a solution of the full relaxation. For that
end we need to show there is a solution for the following matrix completion problem: We are given entries
of xJ , YJ satisfying (75), and we are searching for a completion of Y that satisfies (74). Since the objective
and linear constraints depend only on the coordinates which were determined before the completion, the full
solution will also fulfill the linear constraints, and the objective will not be affected by the completion.
The condition that allows solving the completion problem is related to the structure
of the known coordinates of the matrix. The collection J defines an undirected
graph G = (V,E) whose vertices are V = {1, x1, . . . , xN}. Two distinct vertices
are connected by an edge iff they both appear in one of the matrices (75) defined by
some J 2 J . A graph G is chordal if every (simple) cycle with more than three
vertices contains a chord, i.e., an edge between two non-adjacent members of the
cycle. For example the graph in the top of the inset has a cycle which does not
contain a chord and thus is not a chordal graph. The bottom graph is chordal.
If G is chordal, the following theorem from [97] guarantees that the matrix comple-
tion problem has a solution, and therefore that the two relaxations are equivalent:

Theorem 13. If G is chordal, and (xJ , YJ)J2J satisfy (75), then the missing coor-
dinates of Y can be chosen so that the full semidefinite constraint (74) holds.

PM-SDP Formulation. We now return to the PM problem and instantiate the strategy presented above.
First, we note that PM can be formulated as the following quadratic problem:

min
X,R

kRP �QXk
2
F

(76a)

X1 = 1, 1TX = 1T (76b)

XjX
T

j = diag(Xj), j = 1 . . . n (76c)

RRT = RTR = I (76d)

where we denote by 1 2 Rn⇥1 the all-ones vector, by Xj the j-th column of X , and by diag(Xj) the
diagonal matrix whose diagonal entries are Xj .
To see this is indeed an equivalent formulation of PM, note that if (R,X) is a feasible solution of (76), then
R is orthogonal by definition. The constraint (76c) implies that X2

ij
= Xij for all i, j, so that all elements

of X are in {0, 1}. By (76b) the rows and columns of X sum to one, which implies that X is a permutation
matrix.
In the other direction, note that if (R,X) 2 O(d)⇥⇧n, then since each column of X has only one non-zero
element, XjXT

j
is diagonal. Since all elements of X are in {0, 1}, X2

ij
= Xij for all i, j so that (76c) holds.

It is straightforward to check that (76b),(76d) hold as well.
All polynomials in (76) are quadratic in the entries of R and X . The full SDP relaxation for quadratic
problems described above can then be applied; this will result in a vector x, consisting of the elements of R
and X , of dimension d2 + n2; the SDP constraint will be of size (d2 + n2 + 1)⇥ (d2 + n2 + 1).

90

Doctoral Dissertation Haggai Maron August 2019

We obtain an equivalent, more efficient, relaxation by utilizing the efficient SDP relaxation approach; the
key observation here is that all the quadratic polynomials participating in the formulation (76) of the PM
problem can be expressed using linear polynomials in the entries of XjXT

j
, Xj [R]T , and [R] [R]T , where

[R] 2 Rd
2⇥1 is the column stack of the matrix R and j = 1 . . . n. We therefore introduce new matrix

variables Zj , constrained to satisfy

Zj =

Xj

[R]

�
Xj

[R]

�T
, j = 1 . . . n (77)

Let us next see how the objective and constraints of Problem (76) are linear in the variables X,R,Zj . First,
the objective of (76) can be rewritten as

kRP �QXk
2
F
=
X

j

kRPj �QXjk
2
2 =

X

j

tr(WjZj) + const

for some constant matrices Wj since kRPj �QXjk
2
2 is linear in the entries of Zj . Denoting

Zj =

Aj BT

j

Bj C

�
, Aj 2 Rn⇥n, C 2 Rd

2⇥d
2
, Bj 2 Rd

2⇥n (78)

the constraint (76c) can be rewritten as Aj = diag(Xj). Finally, the constraints (76d) are affine functions of
C and can be rewritten as

tr(H`C) + b` = 0, ` = 1 . . . 2d2

for some constant matrices H`. Replacing the non-convex equality constraint of (77) with convex semidefi-
nite constraints of type (74), we obtain our relaxation for the PM problem, PM-SDP:

min
Zj ,X,R

X

j

tr (WjZj) (79a)

X1 = 1, 1TX = 1T (79b)
Aj = diag(Xj), j = 1 . . . n (79c)

tr(H`C) + b` = 0, ` = 1 . . . 2d2 (79d)

Zj ⌫

Xj

[R]

�
Xj

[R]

�T
, j = 1 . . . n (79e)

where Aj and C are defined as in (78).

Chordality of the relaxation. To show that (79) is equivalent to the full relaxation of the PM problem, we
need to show that the graph G induced by J = {Jj} is chordal, where Jj is the set containing the variables
[R] and Xj . The adjacency matrix of G for this case is illustrated in Figure 34 (left) where each gray
square represents a full block of ones; on the right, we illustrate the corresponding graph G where each disk
represents a clique which corresponds to a diagonal block in the adjacency matrix. To show G is chordal
it is enough to show every cycle of length at-least 4 has a chord: Indeed, if a cycle is completely contained
in one of the sets Jj (represented as triangles in Figure 34, right) then any two vertices are connected by an
edge; otherwise there are two non consecutive visits to vertices in the 1, [R] cliques (top disks), and these
vertices are connected by an edge.

91

Doctoral Dissertation Haggai Maron August 2019

Figure 34: The graph corresponding to the Procrustes Problem (right, each disk represents a clique) is chordal, that
is, has no minimal cycles of length at-least four. The adjacency matrix is shown on the left.

Dimension and complexity. We note that (79e) includes n semidefinite constraints involving N ⇥ N
matrices, where N = d2 + n + 1, as opposed to the full relaxation which in this case would involve a
square matrix with N = d2 + n2 + 1. When the number of points in the sets n is significantly larger than
the dimension d of the space the point reside in (i.e., n � d), which is often the case in point registration
problems, PM-SDP will be significantly more efficient than the full SDP relaxation.

Relaxation properties. The PM-SDP relaxation has the following natural theoretical properties:

1. Rotation and relabeling invariance: Rotating or relabeling the input shapes will not affect the solution
provided by the relaxation. More precisely, if P is replaced with a point cloud P̃ obtained from
P by relabeling and applying an orthogonal transformation, then the objective of PM-SDP remains
unchanged, and X,R transform accordingly.

2. Lower bound: Since PM-SDP is a relaxation its optimal objective is less or equal to the PM optimal
objective. We denote the objective of PM-SDP by d.

3. Positivity: The objective of PM-SDP is always non-negative. This is natural since this is the case for
the objective of PM .

4. Convex-hull of R,X: The R,X coordinates of a feasible solution for PM-SDP are in the convex hull
of O(d)⇥⇧n.

The proof of the these properties as well as the theorems presented below are given in [71].

Exact recovery refers to the problem of finding R,X 2 O(d) ⇥ ⇧n which solve the
equation RP = QX , when such solutions exists, i.e., when d(P,Q) = 0. We call such
solutions exact solutions. From the computational perspective, exact recovery for PM is
equivalent to exact graph matching. The latter is a well-researched problem, not known to
be polynomial. Accordingly, proving exact recovery in full generality is not likely. However,
under the assumption that the covariance d⇥d matrix PP T of the point cloud P has a simple
spectrum, and an additional weak assumption, we are able to prove exact recovery. This too
is analogous to the graph matching problem where finding exact solutions for graphs with
simple spectrum affinity matrices is solvable in polynomial time [19].
The assumption that PP T has a simple spectrum implies that the symmetries of P are all
reflections along the principle axes of the point set P . In particular, it implies that all symmetries of P are

92

Doctoral Dissertation Haggai Maron August 2019

bilateral. The class of bilateral symmetric shapes includes many important instances of the shape matching
problem. Note however, that not all reflections along principle axes are necessarily symmetries of P . The
additional weak assumption required for our exact recovery with symmetries result formulated below is that
there exists a point Pj in P such that its reflections along principle axes belongs to P only for symmetries
of P . The inset figure demonstrates a shape with point having this property (blue); Applying a horizontal
flip, which is a symmetry, maps the point to another point on the shape, while applying a (non-symmetry)
vertical flip maps it outside of the shape (red). We are not aware of bilateral symmetric shapes of practical
interest that do not satisfy this condition.
The exactness argument starts with assuming we are given P,Q with d(P,Q) = 0 and showing that when
d(P,Q) = 0 also d(P,Q) = 0. This follows from relaxation properties 2 and 3 described above: from the
lower bound property we know that the objective d of PM-SDP is a lower bound of the objective d of PM.
From the positivity property, d is always non-negative. It follows that when d(P,Q) = 0 also d(P,Q) = 0,
and the set of feasible solutions of PM-SDP with zero objective, which we call the exact convex solution set,
is a superset of the set of exact solutions. When the shapes are asymmetric, the exact convex solution set
consists of only one point - the exact solution,

Theorem 14. Let P,Q be asymmetric shapes with d(P,Q) = 0 satisfying the simple spectrum and weak
conditions. Then PM-SDP has a unique exact convex solution, which is also the unique exact solution of
PM.

When P,Q are bilateral symmetric, there are several exact solutions. All convex combinations of these
solutions will be in the exact convex solution set, so that generally exact convex solutions will not be exact
solutions. However, by restricting ourselves to the R coordinate of both the exact solutions and the convex
exact solutions, which we refer to as exact orthogonal solutions and exact convex orthogonal solutions, we
are able to show:

Theorem (Full version of theorem 14). Let P,Q be shapes with d(P,Q) = 0 satisfying the simple spectrum
and weak conditions. Then the exact orthogonal solutions of PM are the extreme points of the set of exact
convex orthogonal solutions.

The set of exact convex orthogonal solutions is a convex set and there-
fore its extreme points can be found by simply optimizing linear en-
ergies over this set (a convex problem again). One simple algorithm
for obtaining all exact solutions is repeatedly solving a variation of our
convex relaxation: minimize a random linear energy tr(WR), where
W 2 Rd⇥d is a random matrix drawn from the uniform measure on the
unit sphere, under the set of constraints of (79), and adding the linear
constraint that the objective (79a) is zero. We prove,

Theorem 15. The random algorithm returns an extreme point of the set
of exact convex orthogonal solutions (i.e., an exact orthogonal solution)
with probability one. Moreover, all extreme points are found with the
same probability.

Once an exact orthogonal solution is found it can be shown that the X
coordinate of the solution is guaranteed to be a permutation. The inset
demonstrates the output of the probabilistic algorithm described in theorem 15 on two point sets with perfect
bilateral symmetries sampled from a model of a chair and a picnic table. The random algorithm retrieves
the two bilateral symmetries of the chair, and the four bilateral symmetries of the picnic table.

93

Doctoral Dissertation Haggai Maron August 2019

10.4 Implementation details

We discuss implementation details of the PM-SDP algorithm.

Injective matching. We consider a slight variation of PM where we allow the point cloud P to have fewer
points than Q, and search for the correspondence between P and a subset of the points of Q. This formula-
tion is useful to account for the inherent noise caused from samplings of different shapes. Furthermore, in
case the shapes we wish to compare are not isometric, certain points on one shape might not have a good
match on the second one.
We denote the number of points of P by k n. The formulation of PM in (71) remains unchanged, except
now X 2 Rn⇥k is constrained to be a matrix with entries in {0, 1} such that all columns of X have exactly
one non-zero entry. The only necessary modification for PM-SDP is that the constraint X1 = 1 in (79)
should be replaced with the constraint X1 1.

Utilizing priors for computational efficiency. The PM-SDP framework allows incorporating priors to
improve computational complexity by further reducing the size of the SDP constraint. This is done by
noting that if we know or assume the points Pj and Qi should not correspond then setting Xij = 0 reduces
the size of the SDP constraint by one. Indeed, returning to (77) we see that when Xij = 0 we may also
assume that the i-th row and column of Zj are also zero. Similarly, if Rst = 0 we can eliminate a row and
column of Zj .
Let us demonstrate where this can be used for near-isometric matching. We rule out unlikely correspon-
dences using the average geodesic distance (AGD) descriptor [127]. Corresponding points on nearly iso-
metric shapes should have roughly the same AGD value since this descriptor is isometry-invariant. For
close to isometric shapes, we can safely rule out correspondences between points whose AGD value is
significantly different. If the possibility of Qi corresponding to Pj , is ruled out, we set Xij = 0.
For isometric shapes, the Laplace-Beltrami operator of both shapes has the same eigenvalues, and the linear
isometry R takes eigenfunctions of the first shape with eigenvalue � to eigenfunctions of the second shape
with the same eigenvalue �. In the most common simple spectrum case, this means that R is a diagonal ma-
trix, if the maximal eigenvalue multiplicity of the shapes is two then R is tridiagonal, etc. For near-isometric
shapes, we make the assumption that R is m-diagonal, that is, has m non-zero diagonals symmetrically
around the main diagonal.

0 20 40 60 80
0

.01

.02
Local min. objective: using AGD
Local min. objective: no descriptors

0 0.05 0.1 0.15 0.2 0.250

0.2

0.4

0.6

0.8

1

SCAPE errors: using AGD
SCAPE errors: no descriptors

0 20 40 60 80
0

.01

.02
SDP objective: using AGD
SDP objective: no descriptors

(a)

(b)

(c)

%
 C

or
re

sp
on

de
nc

es

O
bj

ec
tiv

e
O

bj
ec

tiv
e

Geodesic error Experiment number

Figure 35: Ruling out matches with the AGD descriptor has a negligible effect on the quality of the relaxation: (a)
depicts the results of PM-SDP on SCAPE dataset [10] with and without AGD to rule out unlikely matches; (b) the
objective after local minimization; and (c) objective value achieved by PM-SDP. The PM-SDP objective is lower for
the unpruned version while the rest of the results are equivalent for both versions.

In practice, we use the AGD descriptor to rule-out 50-70% of the correspondences, and constrain R to

94

Doctoral Dissertation Haggai Maron August 2019

Figure 36: Visualization of the doubly-stochastic map X as generated by the PM-SDP relaxation when comparing two
SCAPE models; each pair of surfaces depicts a column of X by coloring the point set Q according to the corresponding
value in X; the X matrix before and after projection on the permutations is shown at the bottom-right.

be 1,3, or 5-diagonal. Fortunately, the effect of incorporating these priors on the quality of the relaxation
is negligible: Figure 35 demonstrates that using PM-SDP to match shapes from SCAPE dataset (using the
protocol that will be described in Section 10.6) produces essentially equivalent results with and without using
the AGD descriptor to rule out unlikely matches; the former, however, has the advantage of significantly
improved computational efficiency.

Local minimization. Since the feasible set of PM-SDP is larger than the feasible set of PM, the solution
of PM-SDP in general may not contain orthogonal and permutation matrices. We therefore project the
solution onto the feasible set of PM. We do this by locally minimizing PM using the output of PM-SDP
to initialize the algorithm. The local minimization is done using an ICP-like algorithm which interleaves
between minimizing over one of the matrices R,X while holding the other constant: fixing R results in a
linear program, while for a fixed X there exists a closed-form solution [94]. In Figure 36 we illustrate the
doubly-stochastic matrix X as outputted from the PM-SDP relaxation and the permutation achieved after
the projection. As shown, the PM-SDP output is already very similar to the projection result demonstrating
the tightness of the PM-SDP relaxation. More details are in Section 10.8.
The local minimization following the PM-SDP relaxation allows generalizing Theorem 14 to the inexact
case:

Corollary 2. Let P,Q be point clouds satisfying the conditions of Theorem 14, and let P ✏, Q✏ be sufficiently
small perturbations of P,Q. Then PM-SDP followed by the local minimization returns the unique (global)
solution of PM for P ✏, Q✏.

10.5 Evaluation

We test the tightness of the PM-SDP relaxation by comparing it to the ground truth obtained from an ex-
haustive brute-force sampling algorithm. The latter is only tractable for low dimensional d, and we choose

95

Doctoral Dissertation Haggai Maron August 2019

0 20 40 60 80

0

0.2

0.4

0.6

0.8

PM-SDP
Exhaustive: minimum
Exhaustive: median

d =3

0 0.5 1 1.5 2 2.5
Objective Value

0

5

10

15

%
 E

xp
er

im
en

ts

Exhaustive algorithm
PM-SDP

σ =0

1 1.2 1.4 1.6 1.8
Objective Value

0

2

4

6

8
%

 E
xp

er
im

en
ts

σ =0.1

0.5 1 1.5 2 2.5
Objective Value

0

2

4

6

8

10 σ =0.05

1.6 1.8 2 2.2 2.4
Objective Value

0

1

2

3

4

5 σ =0.2

0 20 40 60 80

0

0.5

1

1.5 d =5

(a)

(c)

(e)

(b)

(d)

(f)
Experiment number Experiment number

Er
ro

r

Figure 37: PM-SDP tightness evaluation: (a-d) show the histograms of the objective values achieved by the exhaustive
sampling algorithm compared to the optimal PM-SDP objective on a few typical runs. When the noise level is low to
medium, our algorithm usually finds the global minimum. On higher noise levels it returns an objective value close to
optimal. (e-f) show illustrations of the deviation of the optimal PM-SDP objective value from the global optimum and
the median value computed by the exhaustive algorithm when � = 0.1, d = 3 and d = 5.

d = 3: The exhaustive algorithm densely samples ⇠ 10k points from a uniform distribution over O(3) and
uses each sample Rj as an initialization for the local minimization algorithm described above.
In Figure 37 we compare the histograms of optimal values achieved by the exhaustive sampling algorithm (in
red) to the energy achieved by PM-SDP (in blue). The data for this experiment was created by randomizing
Q 2 R3⇥50 according to a uniform distribution on [0, 1], and setting P = RTQX + ", with X 2 ⇧50,
R 2 O(3) and noise " ⇠ Nd⇥n(0,�2). (a-d) show the results of a few typical runs with increasing amount
of noise � = 0, 0.05, 0.1, 0.2. We note that the number of local (sub-optimal) minima for the exhaustive
sampling is surprisingly high; for example, for noise level � = 0.1 we found more than 1000 local energy
minima. Additionally, the experiment in (a) verifies our theoretical exactness result as can be seen by the
fact that the blue point achieves the left most value of the red histogram. When the noise level is low to
medium (� = 0.05, 0.1) the PM-SDP relaxation usually produces optimal result, see (b-c). When noise
level is high (� = 0.2 in (d)) the relaxation does not provide an optimal solution but nevertheless produces
a close to optimal result.
A quantitative evaluation of the optimality of PM-SDP is given in Figure 37, (e-f). We ran 80 random
experiments for d = 3 and d = 5 with noise level � = 0.1 and measured the optimal objective value
achieved by PM-SDP in comparison to the global minimum and median value of the objective values found
by the exhaustive algorithm. For visualization, we subtracted the value of the optimal value from all of the
results. PM-SDP (black line) usually returns the optimal value (green) and always returns a better result
than the median objective value (blue) of the exhaustive algorithm.

96

Doctoral Dissertation Haggai Maron August 2019

10.6 Applications

10.6.1 Functional maps

The main application of our algorithm is non-rigid shape matching of pairs of surfaces P,Q. Following
[186] we pose this problem as a high dimensional PM problem, replacing non-rigid isometries with linear
isometries (orthogonal transformations) in higher dimensional space. More specifically, we sample k points
on the first shape and n points on the second shape uniformly using farthest point sampling [73] initialized
with extrema of average geodesic distance (AGD) [127], and embed P,Q in Rd. The embedding is done by
first computing the first d eigenfunctions of the cot-weight Laplace-Beltrami (LB) operator [190] on each of
the surfaces, {�P

i
}, {�Q

i
}, i = 1 . . . d and then assigning the d coordinates (�P

1 (p), ..,�
P
d
(p)) to each point

p 2 P , and similarly to every point q 2 Q.
Current approaches using this formulation, solve the resulting high dimensional PM problem using an ICP-
type iterative algorithm; as this problem is shown to have a vast number of local minima even for d = 3 (see
Figure 37 (a-d)), initialization is crucial.
Using standard shape signatures or features often does not provide a satisfactory initialization (e.g., Figure
47, (b-c)), and previously this ICP procedure was initialized with matched segments for successful results
[186, 191]. In the experiments of this subsection we use PM-SDP followed by local minimization to initial-
ize the ICP of [186] that uses the entire embedded models. In comparisons to previous works we used code
supplied by the authors with their default parameters.

SCAPE dataset. We evaluated the performance of PM-SDP for non-rigid isometric matching using the
SCAPE dataset [10]. We used n = 100 sampled points, d = 17 eigenfunctions, and injective mapping of
k = 50 out of n = 100 . For better efficiency we allowed each point in P to be matched only to the 30%
of the points in Q that have the closest AGD, and selected m = 5 (5 non-zero diagonals in R). The SDP
optimization was performed using Mosek [176]. We extended our results to a full correspondence of all
the vertices by solving ICP in dimension d = 30. The average running time for a pair with these settings
is 30-35 minutes on an Intel Xeon E5 CPU. We also tested a faster version by taking d = 30 and using
diagonal R, that is m = 1; this gave only slightly inferior results with running time of 2.5 minutes per pair.
Figure 38 shows a comparison of our algorithm with several state of the art algorithms. The comparison
was done according to the protocol of [127] accepting symmetries. Our method compares favorably to
functional maps (FM) when initialized with matched segments [186] and improves upon FM with automatic
shape signature initialization. We also show in green the results of the faster, less accurate, variant of our
algorithm described in the previous paragraph. Figure 39 shows typical results of our algorithm from this
experiment.

FAUST dataset. We evaluated the performance of PM-SDP for non-rigid non-isometric matching on the
FAUST dataset [30]. We used a similar setup as in the previous experiment, with the following differences:
We generated the LB operator directly on the point cloud sampling generated by [50] using a similar con-
struction to [20] (weights based on geodesic distances instead of Euclidean distances). We also used two
versions of the PM-SDP: For the first we chose d = 17, m = 5 and we allowed each point in P to be
matched only to the 40% points in Q that have the closest AGD; the running time of this parameters set is
about 40 minutes per pair. For the second, faster parameter set, we used n = 40, k = 30, an embedding
with d = 10, m = 5, and kept 80% of Q for each point in P ; the running time with these parameters is less
than 4 minutes per pair.
Figure 40 compares PM-SDP with the recent method of [50] which demonstrated superb state of the art
results on this dataset. However, they rely on the assumption that the shapes are initially aligned in 3D

97

Doctoral Dissertation Haggai Maron August 2019

0 0.05 0.1 0.15 0.2 0.25

Geodesic Error

0

20

40

60

80

100

%
 C

or
re

sp
on

de
nc

es
 PM-SDP
 PM-SDP fast
 Ovsjanikov et al. 2012 - WKS
 Ovsjanikov et al. 2012 - segmentations
 Pokrass et al. 2013 - segmentations
 Kim et al. 2011

Figure 38: Results of our algorithm and state of the art algorithms on the SCAPE [10] non-rigid shape matching
benchmark.

and indeed use this alignment by adding a regularization term. In order to make a fair comparison we
disabled this regularization term. When this term is removed, intrinsic symmetries might be found by the
algorithm. In order to account for that we sampled a set of 52 ground truth points in each mesh, and added
the symmetric flip to the ground truth map. Aside from that, we followed Chen and Koltun’s evaluation
protocol (including using their point clouds as stated above). As can be read from the graphs, our algorithm
(blue) compares favorably in both the inter and intra class matching scenarios in terms of cumulative error
distribution and average error. We also show here a faster version of our algorithm (green), which provides
good results in a shorter computation time. Figure 41 shows some typical results of our algorithm for both
inter and intra class matching.

SCAPE dataset (raw scans). We further tested our algorithm on the SCAPE original raw scans dataset
[10] that contain missing data, holes and noise. We used the same preprocessing method of [50] and ran
our algorithm with exactly the same parameters as on the FAUST dataset on the 71 pairs as defined in the
benchmark of [127]. Figure 42 shows the cumulative error graph and a few typical results. We note that
also here we ran [50] without the extrinsic regularization term (in addition to the reasons stated above, for
the SCAPE dataset this prior is inappropriate due to its pose diversity).

SHREC07 dataset. We also ran PM-SDP (n = 100, k = 40) on the highly non-isometric SHREC07
dataset [91]. On this dataset, PM-SDP achieved good results only on some of the classes; Figure 43 demon-
strates typical results from these classes: the Ant, Teddy and Glasses.

10.6.2 Anatomical classification

The Procrustes distance with labeled points (i.e., when X is known) is a well-known measure of shape
similarity in fields such as statistical shape analysis [122, 34]. The sampling and labeling of points in a
collection of shapes is tedious work that requires the attention of an expert for several months [34]. The
possibility of solving Procrustes matching with unlabeled points (i.e., the PM problem in this work) using
PM-SDP makes the task of finding meaningful landmarks unnecessary.

98

Doctoral Dissertation Haggai Maron August 2019

Figure 39: Examples of typical maps obtained with PM-SDP on the SCAPE dataset [10]. In all pairs: left mesh is
colored using a predefined color map; right mesh is colored according to the correspondence. Bottom right: a failure
case.

We took three anatomical bone datasets containing 116, 61 and 45 models respectively from [34]. We
sampled n = k = 120 points of each shape using farthest point sampling, ran PM-SDP and used its output
to initialize ICP that matches 400 farthest points on the shapes. This computation takes about 7 minutes for
each pair.
We followed the classification protocol suggested in [34] where each shape is classified according to its
nearest (in Procrustes distance) neighbor; each shape in the datasets has three biological tags: Genera,
Family and Above Family, and we tested classification of all three categories. Table 13 presents classification
success rates (what fraction of shapes were correctly classified in each classification test) and shows PM-
SDP compares favorably to Boyer’s method [34], and is remarkably comparable to the results achieved using
human expert labeled landmarks. Figure 44 shows a few examples of maps that were found by PM-SDP.

10.6.3 Shape collection alignment

We demonstrate another application of PM-SDP to consistent alignment of shapes. The task we would like to
solve here is the following: given a set of semantically similar shapes - apply an orthogonal transformation
per shape so that the shapes are aligned. We solve this problem by using PM-SDP to solve for pairwise
orthogonal transformations and permutations over the entire dataset and then modifying the ICP procedure
we mentioned in section 10.4 to project onto the set of consistent orthogonal transformations; The details
of the projection procedure and definition of consistency are given in Section 10.9. To demonstrate the

99

Doctoral Dissertation Haggai Maron August 2019

0 0.2 0.4 0.6 0.8 1
Error

0

20

40

60

80

100

%
 C

or
re

sp
on

de
nc

es

PM-SDP
PM-SDP fast
Chen et al. [no extrinsic]

0 0.2 0.4 0.6 0.8 1
Error

0

20

40

60

80

100

(a) Intra: cumulative error (b) Inter: cumulative error

0 10 20 30 40 50
Experiment Number

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 E
rr

or

0 10 20 30 40 50
Experiment Number

0

0.2

0.4

0.6

0.8

1

(c) Intra: average error (d) Inter: average error

Figure 40: Cumulative and average errors achieved on the FAUST dataset [30] by PM-SDP compared to [50] without
the global extrinsic regularization term.

Intra-subject

Inter-subject

Figure 41: Examples of typical maps obtained with PM-SDP on the FAUST dataset [30]. Top row: intra-subject.
Bottom rows: inter-subject. Bottom right: a failure case.

100

Doctoral Dissertation Haggai Maron August 2019

Bottom view

Figure 42: Performance on the SCAPE raw scans dataset [10]. Top left: Cumulative error distribution. Other:
Examples of typical maps obtained with PM-SDP . Bottom right: a failure case (forward-backward flip).

Figure 43: Examples of maps obtained with PM-SDP on the non-isometric SHREC07 dataset [91]. Bottom right: a
failure case (incorrect corresponding legs).

flexibility of our approach, we use a variation of the high dimensional embedding used above. We embedded
the shapes into a seven-dimensional space, the first three coordinates being the euclidian x, y, z coordinates,
and the other 4 were eigenfunctions of the LB operator (as was done for isometric matching above). Since
the Euclidian coordinates should not mix with the eigenfunction coordinates we constrain R to be block
diagonal.

101

Doctoral Dissertation Haggai Maron August 2019

As demonstrated in Figure 45 PM-SDP with d = 7 (second row) yielded a better consistent alignment in
comparison with the method for d = 3. The shapes for this experiment are taken from three classes of the
SHREC07 [91] dataset. We made sure the shapes are arbitrarily rotated, sampled n = k = 20 farthest points
on each shape and solved for all pairwise matchings; for d = 3 each pair is computed in 2-3 seconds and for
d = 7 each pair takes 15-20 seconds.

Timing. Timing of experiments that appear in the section have already been stated. Here we provide
quantitative timing experiments. Figure 46 shows typical run times as a function of dimension or number
of points. The experiments were conducted on random and noisy synthetic data. In experiment (a) the
dimension d varies from 3 to 20 and we match k = 50 points to n = 100 points. Experiment (b) compares
runtime versus the number of points: in each experiment we match a k point point cloud to a n = 2k
point point cloud (up to k = 50, n = 100) and the dimension is constant d = 10. In both cases, R was
constrained to be 5-diagonal and we allowed each point to be matched to 30% of the points in the other point
cloud based on prior knowledge (in this case these points were selected randomly). (c) Shows comparison
of the running time of PM-SDP and the full SDP relaxation discussed in section 10.3. In this case we use
d = 10, k = n = 5 . . . 25. Notably, the full relaxation becomes intractable for more than 17 point, whereas
the equivalent PM-SDP formulation solves these problems in just seconds.

Dataset Classification PM-SDP Boyer et al. Expert
Genera 91.9 90.9 91.9

Teeth Family 94.3 92.5 94.3
Above Family 98.2 94.8 95.7

Genera 79.6 79.6 88.1
Metatarsal Family 93.4 91.8 93.4

Above Family 100 100 100
Genera 82.2 84.4 77.8

Radius Family NA NA NA
Above Family NA NA NA

Table 13: Classification results (accuracy) achieved by PM-SDP on three anatomical shape data sets compared with
[34] and a human expert.

10.7 Conclusions

Summary. We have developed an algorithm that approximates the global minimum of the PM problem
with a proven exact recovery property in presence of bilateral symmetries, as well as several other the-
oretical properties of the algorithm. We demonstrated state of the art results for non-rigid isometric and
near-isometric shape matching problems solved using our convex relaxation. We also showed that PM-SDP
is useful for anatomical classification of shapes and for aligning shape collections.

Limitations. In contrast to previous SDP relaxations of similar problems, we are able to deal with the
registration of around one hundred points. Nonetheless, in comparison with non-SDP based approaches, the
main limitation of this algorithm remains its time complexity, which we predict will improve as research on
SDP optimization progresses; another limitation of our shape matching framework is the fact that spectral
embedding is aimed at near-isometric matching, and is not a good model of the problem for non-isometric
shapes.

102

Doctoral Dissertation Haggai Maron August 2019

Figure 44: Examples of typical maps that were obtained by PM-SDP on the anatomical datasets of [34]. First row:
Teeth; second row: Metatarsal bone; third row: Radius bone.

Future work. One direction we intend to pursue is applying our technique for constructing efficient re-
laxations for quadratic optimization to different problems other than PM. An interesting theoretical problem
which we intend to pursue is proving that PM-SDP (or similar relaxations) give a good approximation of the
solution in the general (noisy, far from exact) case, in contrast with our theoretical analysis here which ap-
plies only for isometric or near-isometric shapes. Extending to two-way partial matching is also interesting.
ggestions.

10.8 Local minimization

The local minimization can be initialized using the output of PM-SDP in four different ways. Two immediate
possibilities are given by choosing the R or X coordinates from the optimal solution. We note that R,X
may not be in O(d) ⇥ ⇧n, but as mentioned previously they are in the convex hull of that set. Two other
possibilities can be obtained from decomposing the lifted variables Bj as explained next. When (77) holds,
we can use (78) to write Bj = [R]XT

j
. We can then combine the matrices Bj into a larger matrix B so that

B = [R] [X]T , and X,R can be recovered in this case by factorizing B into an outer product of two vectors.
Motivated by this, we do the following:

1. Create the matrix B using the matrices Bj : B = [B1, ..., Bk].

2. Project B onto the set of rank one matrices using SVD, denote the projection as bB.

3. Factorize the projected rank-one matrix as an outer product of two vectors bB = [bR][bX], and use these
vectors as another two possible initializations of R and X .

10.9 Collection alignment

In this section we present the collection alignment algorithm mentioned in sub-section 10.6.3 . First we
solve PM for each pair of shapes in the collection with the additional constraint that Rij is in the convex
hull of SO(3) using the formula from [212]. Then, we build a large matrix R containing all the orthogonal
transformations obtained by PM-SDP as sub-blocks. More specifically, each d ⇥ d block in the (i, j)-th
position is the orthogonal transformation between shape i and shape j. In case the set of transformations

103

Doctoral Dissertation Haggai Maron August 2019

Figure 45: Finding consistent orthogonal transformations between non-isometric shapes. The figure shows three
classes from the SHREC07 dataset [91]. The first row of each class shows the alignment obtained by PM-SDP in
3D. The second row shows the alignment achieved using a 7-dimensional embedding with PM-SDP. Rectangles show
corrected orthogonal transformations.

5 10 15
Dimension

0

1000

2000

3000

Ti
m

e
in

 se
co

nd
s k=50, n=100

(a)

20 40 60 80 100
Number of points

0

100

200

300 d=10

(b)

5 10 15 20 25
Number of points

10
-2

100

102

104

Full relaxation
PM-SDP

d=10

20

(c)

Figure 46: typical run times as functions of the dimension and the number of points. (a) as a function of the dimension
d, (b) as a function of the number of points n, (c) Comparison to the full relaxation discussed in section 10.3.

104

Doctoral Dissertation Haggai Maron August 2019

is consistent (i.e., for each i, j, k, Rij · Rjk = Rik) , R is positive semidefinite and has rank d (for the
definition of consistent maps and orthogonal transformations see [222, 112, 180]).
In the spirit of this observation, we feed this matrix into a an iterative ICP-like algorithm that performs the
following steps:

1. Project R onto the set of consistent rank d matrices: Let UDUT be the eigen-decomposition of R, we
take the largest d eigenvectors of U scaled by the square root of the corresponding eigenvalue, which
we denote Ud and project each of its d ⇥ d block to its closest orthogonal matrix. Denote the matrix
with the new blocks as U 0

d
then the output of this step is R0 = U 0

d
(U 0

d
)T .

2. For each block of R0 solve for the best permutation Xij using linear programming as described in
section 10.4 .

3. For each permutation Xij solve for the best orthogonal transformation using the closed form solution
mentioned above.

4. Construct R from the matrices Rij .

5. Iterate until convergence.

Our experiments show that this algorithm reaches a steady state after a few iterations that take a few seconds
for the problems in Subsection 10.6.3.

105

Doctoral Dissertation Haggai Maron August 2019

11 Graph matching via tight quadratic relaxation

This section is based on [72].

11.1 Introduction

Matching problems, seeking some useful correspondence between two shapes or, more generally, discrete
metric spaces, are central in computer graphics and vision. Matching problems are often modeled as opti-
mization of a quadratic energy over permutations. Global optimization and approximation of such problems
is known to be NP-hard [150].
A common strategy for dealing with the computational hardness of matching problems is replacing the
original optimization problem with an easier, similar problem that can be solved globally and efficiently.
Perhaps the two most common scalable relaxations for such problems are the spectral relaxation for energies
with non-negative entries [143, 74], and the doubly stochastic (DS) relaxation for convex energies [5, 76].
Our work is motivated by the recent work of [124] who proposed a semi-definite programming (SDP)
relaxation which is provably stronger than both spectral and DS relaxations. The obtained relaxation was
shown empirically to be extremely tight, achieving the global ground truth in most experiments presented.
However, a major limitation was the computational cost of solving a semi-definite program with O(n4)
variables. Accordingly in this section we pursue the following question:
Question: Is it possible to construct a relaxation which is stronger than the spectral and DS relaxations,
without compromising efficiency?

Figure 47: Our algorithm offers a flexible and scalable framework for matching metric spaces and is guaranteed
to perform better than the classical spectral and doubly-stochastic relaxations. Left: non-rigid matching computed
automatically between two raw scans with topological issues from the FAUST dataset [30]; Right, an automatic
arrangement of natural images in a 2D grid based on deep features-based pairwise affinity. Note how similar objects
are clustered together.

SDP

DS++

DSSpectral non convex

DS+

We give an affirmative answer to this question and show
that by correctly combining the spectral and DS relax-
ations in the spirit of [79] we obtain a relaxation which
is provably tighter than both, and is in fact in a suitable
sense exactly the intersection of both relaxations. We
name this relaxation DS+. Moreover, we observe that
a refined spectral analysis leads to a significant improve-
ment to this relaxation and a provably tighter quadratic

106

Doctoral Dissertation Haggai Maron August 2019

program we name DS++. This relaxation enjoys the same
scalability as DS and DS+ as all three are quadratic pro-
grams with n2 variables and the same number of constraints. Additional time efficiency is provided by
specialized solvers for the DS relaxation such as [225]. We note that DS++ is still less tight than the fi-
nal expensive and accurate relaxation of [124] yet strikes a balance between tightness and computational
complexity. The hierarchy between the relaxations is illustrated in the inset and proven in section 11.4.
Since DS++ is a relaxation, it is not guaranteed to output an integer solution (i.e., a permutation). To
obtain a feasible permutation we propose a homotopy-type method, in the spirit of [182, 265]. This method
continuously deforms the energy functional from convex to concave, is guaranteed to produce an integer-
solution and in practice outperforms standard Euclidean projection techniques. Essentially it provides a
strategy for finding a local minima for the original non-convex problem using a good initial guess obtained
from the convex relaxation.
Our algorithm is very flexible and can be applied to both convex and non-convex energies (in contrast with
DS), and to energies combining quadratic and linear terms (in contrast with the spectral relaxation, which
also requires energies with non-negative entries). It can also be easily modified to allow for additional linear
constraints, injective and partial matching, and solving quadratic optimization problems over the doubly
stochastic matrices. We present experiments demonstrating the effectiveness of our method in comparison
to random initializations of the non-convex problem, spectral, DS, and DS+ relaxations, as well as lifted
linear-programming relaxations.
We have tested our algorithm on three applications: (i) non-rigid matching; (ii) image arrangements; and
(iii) coarse-to-fine matching. Comparison to state-of-the-art algorithms for these applications shows that our
algorithm produces favorable results in comparable speed.
Our contributions in this work are threefold:

1. We identify the optimal initial convex and concave relaxation.

2. We show, both theoretically and experimentally that the proposed algorithm is more accurate than
other popular contemporary methods. We believe that establishing a hierarchy between the various
relaxation methods for quadratic matching is crucial both for applications, and for pushing forward
the algorithmic state of the art, developing stronger optimization algorithms in the future.

3. Lastly, we build a simple end-to-end algorithm utilizing recent advances in optimization over the
doubly-stochastic matrices to provide a scalable yet accurate algorithm for quadratic matching.

11.2 Previous work

Many works in computer vision and graphics model correspondence problems as quadratic optimization
problems over permutation matrices. In many cases these problems emerge as discretizations of isometry-
invariant distances between shapes [166, 165] . We focus here on the different methods to approximately
solve these computationally hard problems.

Spectral relaxation The spectral relaxation for correspondence problems in computer vision has been
introduced in [143] and has since become very popular in both computer vision and computer graphics, e.g.,
[62, 149, 74, 217]. This method replaces the requirement for permutation matrices with a single constraint
on the Frobenious norm of the matrices to obtain a maximal eigenvalue problem. It requires energies with
positive entries to ensure the obtained solution is positive. This relaxation is scalable but is not a very
tight approximation of the original problem. A related relaxation appears in [205], where the variable x is

107

Doctoral Dissertation Haggai Maron August 2019

constrained to be non-negative with kxk1 = 1. This optimization problem is generally non-convex, but the
authors suggest a method for locally minimizing this energy to obtain a sparse correspondence.

DS relaxation An alternative approach relaxes the set of permutations to its convex hull of doubly stochas-
tic matrices [214]. When the quadratic objective is convex, this results in a convex optimization problem
(quadratic program) which can be minimized globally, although the minimum may differ from the global
minima of the original problem. [227] argue for the usefulness of the fuzzy maps obtained from the relax-
ation. For example, for symmetric shapes fuzzy maps can encode all symmetries of the shape.
[5] shows that for the convex graph matching energy the DS relaxation is equivalent to the original problem
for generic asymmetric and isomorphic graphs. These results are strengthened in [76]. However when
noise is present the relaxations of the convex graph matching energy will generally not be equivalent to the
original problem [154] . Additionally, for concave energies the DS relaxation is always equivalent to the
original problem [87], since minima of concave energies are obtained at extreme points. The challenge for
non-convex energies is that global optimization over DS matrices is not tractable.
To achieve good initialization for local minimization of such problems, [182, 87, 265] suggest to minimize
a sequence of energies Et which gradually vary from a convex energy E0 to an equivalent concave energy
E1. In this work we adopt this strategy to obtain an integer solution, and improve upon it by identifying the
optimal convex and concave energies from within the energies Et.
The authors of [79, 80] show that the DS relaxation can be made more accurate by adding a concave penalty
of the form �a kXk

2
F

to the objective. To ensure the objective remains convex they suggest to choose a
to be the minimial eigenvalue of the quadratic objective. We improve upon this choice by choosing a to
be the minimial eigenvalue over the doubly stochastic subspace, leading to a provably tighter relaxation.
The practical advantage of our choice (DS++) versus Fogel’s choice (DS+) is significant in terms of the
relaxation accuracy as demonstrated later on. The observation that this choice suffices to ensure convexity
has been made in the convergence proof of the softassign algorithm [201].

Optimization of DS relaxation Specialized methods for minimization of linear energies over DS matrices
[133, 58, 22, 224] using entropic regularization and the Sinkhorn algorithm are considerably more efficient
than standard linear program solvers for this class of problems. Motivated by this, [200] propose an algo-
rithm for globally minimizing quadratic energies over doubly stochastic matrices by iteratively minimizing
regularized linear energies using Sinkhorn type algorithms. For the optimization in this work we applied
[225] who offer a different algorithm for locally minimizing the Gromov-Wasserstein distance by iteratively
solving regularized linear programs. The advantage of the latter algorithm over the former algorithm is its
certified convergence to a critical point when applied to non-convex quadratic energies.

Other convex relaxations Stronger relaxations than the DS relaxation can be obtained by lifting methods
which add auxiliary variables representing quadratic monomials in the original variables. This enables
adding additional convex constraints on the lifted variables. A disadvantage of these methods is the large
number of variables which leads to poor scalability. [124] propose in an SDP relaxation in the spirit of [270],
which is shown to be stronger than both DS (for convex objective) and spectral relaxations, and in practice
often achieves the global minimum of the original problem. However, it is only tractable for up to fifteen
points. [50] use a lifted linear program relaxation in the spirit of [249, 2]. To deal with scalability issues
they use Markov random field techniques [130] to approximate the solution of their linear programming
relaxation.

108

Doctoral Dissertation Haggai Maron August 2019

Quadratic assignment Several works aim at globally solving the quadratic assignment problem using
combinatorial methods such as branch and bound. According to a recent survey [150] these methods are
not tractable for graphs with more than 30 points. Branch and bound methods are also in need of convex
relaxation to achieve lower bounds for the optimization problem. [11] provide a quadratic programming
relaxation for the quadratic assignment problem which provably achieves better lower bounds than a com-
peting spectral relaxation using a method which combines spectral, linear, and DS relaxations. Improved
lower bounds can be obtained using second order cone programming [253] and semi-definite programming
[65] in O(n2) variables. All the relaxations above use the specific structure of the quadratic assignment
problem while our relaxation is applicable to general quadratic objectives which do not carry this structure
and are very common in computer graphics. For example, most of the correspondence energies formulated
below and considered in this work cannot be formulated using the quadratic assignment energy.

Other approaches for shape matching A similar approach to the quadratic optimization approach is
the functional map method (e.g., [186]) which solves a quadratic optimization problem over permutations
and rotation matrices, typically using high-dimensional ICP provided with some reasonable initialization.
Recently [160] proposed an SDP relaxation for this problem with considerably improved scalability with
respect to standard SDP relaxations.
Supervised learning techniques have been successfully applied for matching specific classes of shapes in
[207, 162, 273, 245]. A different approach for matching near isometric shapes is searching for a mapping in
the low dimensional space of conformal maps which contains the space of isometric maps [148, 266, 126].
More information on shape matching can be found in shape matching surveys such as [234].

11.3 Approach

Motivation Quadratic optimization problems over the set of permutation matrices arise in many contexts.
Our main motivating example is the problem of finding correspondences between two metric spaces (e.g.,
shapes) (S, dS) and (T , dT) which are related by a perfect or an approximate isometry. This problem can
be modeled by uniformly sampling the spaces to obtain {s1, . . . sn} ✓ S and {t1, . . . , tn} ✓ T , and then
finding the permutation X 2 ⇧n which minimizes an energy of the form

E(X) =
X

ijk`

Wijk`XijXk` +
X

ij

CijXij . (80)

Here Wijk` is some penalty on deviation from isometry: If the points si, sk correspond to the points tj , t`
(resp.), then the distances between the pair on the source shape and the pair on the target shape should be
similar. Therefore we choose

Wijk` = p(dS(si, sk), dT (tj , t`)) (81)

where p(u, v) is some function penalizing for deviation from the set {(u, v) | u = v} ✓ R2. Several different
choices of p exist in the literature.
The linear term C is sometimes used to aid the correspondence task by encouraging correspondences si 7!
tj between points with similar isometric-invariant descriptors.

Problem statement Our goal is to solve quadratic optimization problems over the set of permutations as
formulated in (80). Denoting the column stack of permutations X 2 Rn⇥n by the vector

x = [X11, X21, . . . , Xnn]
T
2 Rn

2

109

Doctoral Dissertation Haggai Maron August 2019

leads to a more convenient phrasing of (80):

min
X

E(X) = xTWx+ cTx+ d (82a)

s.t. X 2 ⇧n (82b)

This optimization problem is non-convex for two reasons. The first is the non-convexity of ⇧n (as a discrete
set of matrices), and the second is that E is often non-convex (if W is not positive-definite). As global
minimization of (82) is NP-hard [150] we will be satisfied with obtaining a good approximation to the
global solution of (82) using a scalable optimization algorithm. We do this by means of a convex relaxation
coupled with a suitable projection algorithm for achieving integer solutions.

11.3.1 Convex relaxation

We formulate our convex relaxation by first considering a one-parameter family of equivalent formulations
to (82): observe that for any permutation matrix X we have that kXk

2
F
= n. It follows that all energies of

the form
E(X, a) = E(X)� a kXk

2
F
+ a · n (83)

coincide when restricted to the set of permutations. Therefore, replacing the energy in (82) with E(X, a)
provides a one-parameter family of equivalent formulations. For some choices of a the energy in these
formulations is convex, for example, for any a �min, where �min is the minimal eigenvalue of W .
For each such equivalent formulation we consider its doubly stochastic relaxation. That is, replacing the
permutation constraint (82b) with its convex-hull, the set of doubly-stochastic matrices:

min
X

E(X, a) (84a)

s.t. X1 = 1, 1TX = 1T (84b)
X � 0 (84c)

Our goal is to pick a relaxed formulation (i.e., choose an a) that provides the best lower bound to the global
minimum of the original problem (82). For that end we need to consider values of a that make E(X, a)
convex and consequently turn (84) into a convex program that provide a lower bound to the global minimum
of (82).
Among all the convex programs described above we would like to choose the one which provides the tightest
lower bound. We will use the following simple lemma proved in Section 11.10:

Lemma 10. For all doubly stochastic X we have E(X, a) E(X, b) when a < b, and E(X, a) = E(X, b)
if and only if X is a permutation.

An immediate conclusion from this lemma is that minX2DS E(X, a) minX2DS E(X, b) and so the best
lower bound will be provided by the largest value of b for which E(X, b) is convex.
See for example the inset illustrating the energy graphs for different a
values for a toy-example: in red - the graph of the original (non-convex)
energy with a = 0; in blue the energy with a < �min; and in green
a = �min. Note that the green graph lies above the blue graph and
all graphs coincide on the corners (i.e., at the permutations). Since the
higher the energy graph the better lower bound we achieve it is desirable
to take the maximal a that still provides a convex program in (84). In

110

Doctoral Dissertation Haggai Maron August 2019

the inset the green and blue points indicate the solution of the respective
relaxed problems; in this case the green point is much closer to the sought after solution, i.e., the lower-left
corner.
To summarize the above discussion: the desired a is the maximal value for which E(X, a) is a convex
function. As noted above choosing a = �min in the spirit of [79], leads to a convex problem which we
denote by DS+. However this is in fact not the maximal value in general. To find the maximal a we can
utilize the fact that X is constrained to the affine space defined by the constraints (84b): We parameterize the
affine space as x = x0+Fz, where x0 is some permutation, F is any parameterization satisfying F TF = I ,
and z 2 R(n�1)2 . Plugging this into E(X, a) provides a quadratic function in z of the form

zTF T (W � aI)Fz + a↵(z)

where a↵(z) is some affine function of z. It follows that (84) will be convex iff F T (W � aI)F is positive
semi-definite. The largest possible a fulfilling this condition is the minimal eigenvalue of F TWF which
we denote by �̄min. Thus our convex relaxation which we name DS++ boils down to minimizing (84) with
a = �̄min.

11.3.2 Projection

We now describe our method for projecting the solution of our relaxation onto the set of permutations. This
method is inspired by the ”convex to concave” method from [182, 87, 265], but also improves upon these
works by identifying the correct interval on which the convex to concave procedure should be applied as we
now describe.
Lemma 10 tells us that the global optimum of E(X, a) over the doubly stochastic matrices provides an
increasingly better approximation of the global optimum of the original problem (82) as we keep increasing
a even beyond the convex regime, that is a > �̄min. In fact, it turns out that if a is chosen large enough so
that E(X, a) is strictly concave, then the global optima of (84) and the global optima of the original problem
over permutations are identical. This is because the (local or global) minima of strictly concave functions
on a compact convex set are always obtained at the extreme points of the set. In our case, the permutations
are these extreme points.
This leads to a natural approach to approximate the global optimum of (82): Solve the above convex problem
with a = �̄min and then start increasing a > �̄min until an integer solution is found. We choose a finite
sequence a0 < a1 < . . . < aN , where a0 = �̄min and E(X, aN) is strictly concave. We begin by solving
(84) with a0 which is exactly the convex relaxation described above and obtain a minimizer X0. We then
iteratively locally minimize (84) with a = ai using as an initialization the previous solution Xi�1. The
reasoning behind this strategy is that when ai and ai�1 are close a good solution for the latter should provide
a good initialization for the former, so that at the end of the process we obtain a good initial guess for the
minimization of E(X, aN), which is equivalent to the original integer program. We stress that although the
obtained solution may only be a local minimum, it will necessarily be a permutation.
To ensure that E(X, aN) is strictly concave we can choose any aN larger than �̄max, which analogously
to �̄min is defined as the largest eigenvalue of F TWF . In practice we select aN = �̄max which in the
experiments we conducted is sufficient for obtaining integer solutions. We then took ai by uniformly sam-
pling [a0, aN] where unless stated otherwise we used ten samplings (N = 9). Throughout the section we
will use the term DS++ algorithm to refer to our complete method (relaxation+projection) and DS++ or
DS++ relaxation to refer only to the relaxation component.
Figure 48 shows the correspondences (encoded in a specific row of X) obtained at different stages of the
projection procedure when running our algorithm on the FAUST dataset [30] as described below. The figure

111

Doctoral Dissertation Haggai Maron August 2019

shows the correspondences obtained from optimizing E(X, ai) for i = 0, 4, 7, N = 9.
Our algorithm is summarized in Algorithm 1: In Section 11.5 we discuss efficient methods for implementing
this algorithm.

Input: The energy components W, c, d

Compute �̄min, �̄max of F TWF ;
Choose N + 1 uniform samples a0 = �̄min, a1, . . . , aN = �̄max;
Solve (84) with a = a0 to obtain X0 ;
for i = 1 . . . N do

Solve (84) with a = ai initialized from Xi�1 to obtain Xi ;
end
Output: The permutation XN

Algorithm 1: DS++ algorithm

11.4 Comparison with other relaxations

The purpose of this section is to theoretically compare our relaxation with common competing relaxations.
We prove

Theorem 16. The DS++ relaxation is more accurate than DS+, which in turn is more accurate than the
spectral and doubly stochastic relaxation.
The SDP relaxation of [124] is more accurate than all the relaxations mentioned above.

Our strategy for proving this claim is formulating all relaxations in a unified framework, using the SDP
lifting technique in [124], that in turn readily enables comparison of the different relaxations.
The first step in constructing SDP relaxations is transforming the original problem (82) into an equivalent
optimization problem in a higher dimension.The higher dimension problem is formulated over the set:

⇧"
n =

n
(X,Y)

��� X 2 ⇧n, Y = xxT
o

Using the identity
trWY = trWxxT = xTWx

we obtain an equivalent formulation to (82):

min
X,Y

E(X,Y) = trWY + cTx+ d

s.t. (X,Y) 2 ⇧"
n

SDP relaxations are constructed by relaxing the constraint (X,Y) 2 ⇧"
n using linear constraints on X,Y

and the semi-definite constraint Y ⌫ xxT .
[124] showed that the spectral and doubly stochastic relaxations are equivalent to the following SDP relax-
ations:

max E(X,Y)

(S") s.t. trY = n

Y ⌫ xxT

max E(X,Y)

(DS") s.t. X 2 DS

Y ⌫ xxT

112

Doctoral Dissertation Haggai Maron August 2019

Figure 48: Visualization of the projection procedure. For each point on the source (left) a fuzzy correspondence is
obtained by minimizing the convex energy (second from the left). The correspondence gradually becomes sharper as
the projection procedure proceeds until the final step of minimizing a concave energy where a well defined map is
obtained (right).

113

Doctoral Dissertation Haggai Maron August 2019

We note that the spectral relaxation is applicable only when c = 0, and the DS relaxation is tractable only
when the objective is convex, i.e., W ⌫ 0. The equivalence holds under these assumptions.
Given this new formulation of spectral and DS, an immediate method for improving both relaxations is
considering the Intersection-SDP, obtained by enforcing the constraints from both (DS") and (S"). The
relaxation can be further improved by adding additional linear constraints on (X,Y). This is the strategy
followed by [124] to achieve their final tight relaxation which is presented in Eq. (88). The main limitation
of this approach is its prohibitive computational price resulting from solving SDPs with O(n4) variables, in
strong contrast to the original formulation of spectral and DS that uses only n2 variables (i.e., the permutation
X). This naturally leads to the research question we posed in the introduction, which we can now state in
more detail:
Question: Is it possible to construct an SDP relaxation which is stronger than (DS") and (S"), and yet is
equivalent to a tractable and scalable optimization problem with n2 variables?
We answer this question affirmatively by showing that the Intersection-SDP is in fact equivalent to DS+.
Additionally DS++ is equivalent to a stronger SDP relaxation which includes all constraints from the
Intersection-SDP, as well as the following additional 2n3 constraints: Let us write the linear equality
constraints appearing in the definition of the DS matrices (i.e., (84b)) in the form Ax = b. Then any
(X,Y) 2 ⇧"

n in particular satisfies AxxT = bxT and therefore also:

AY = bxT

Adding these constraints to the Intersection-SDP we obtain

min
X,Y

E(X,Y) (85a)

s.t. trY = n (85b)
X � 0 (85c)
Ax = b (85d)

AY = bxT (85e)

Y ⌫ xxT (85f)

Theorem 16 now follows from:

Lemma 11. 1. The Intersection-SDP is equivalent to DS+.

2. The SDP relaxation in (85) is equivalent to DS++.

3. The SDP relaxation of [124] can be obtained by adding additional linear constraints to (85).

We prove the lemma in the Section 11.10.

11.5 Implementation details

Entropic regularization Optimization of (84) can be done using general purpose non-convex solvers
such as Matlab’s fmincon, or solvers for convex and non-convex quadratic programs. We opted for the
recent method of Solomon et al.[225] that introduced a specialized scalable solver for local minimization of
regularized quadratic functionals over the set of doubly stochastic matrices.
The algorithm of [225] is based on an efficient algorithm for optimizing the KL divergence

KL(x|y) = hx, log xi � hx, log yi

114

Doctoral Dissertation Haggai Maron August 2019

Figure 49: Typical maps obtained using our method on the FAUST dataset [30]. In each pair: left mesh is colored
linearly and the computed map is used to transfer the coloring to the target, right mesh.

Figure 50: Image arrangement according to the mean color of images using the DS++ algorithm. Table 14 shows
corresponding quantitative results.

115

Doctoral Dissertation Haggai Maron August 2019

where x is the column stack of a doubly stochastic matrix X and y is some fixed positive vector. The
solution for the KKT equations of this problem can be obtained analytically for x, up to scaling of the rows
and columns, which is performed by the efficient Sinkhorn algorithm. See [58] for more details.
The algorithm of [225] minimizes quadratic functionals f(x) = xTHx + cTx (where in our case H =
W � aI) over doubly stochastic matrices by iteratively optimizing KL-divergence problems. First the
original quadratic functional is regularized by adding a barrier function ↵ hx, log xi keeping the entries
of x away from zero to obtain a new functional

f↵(x) = f(x) + ↵ hx, log xi

The parameter ↵ is chosen to be some small positive number so that its effect on the functional is small. We
then define g↵(x) = exp

�
�↵�1(Hx+ c)

�
so that

f↵(x) = ↵KL(x|g↵(x))

We then optimize f↵ iteratively: In iteration k + 1, g↵ is held fixed at its previous value x = xk, and
an additional term KL(x|xk) is added penalizing large deviations of x from xk. More precisely, xk+1 is
defined to be the minimizer of

⌘KL(x|g↵(xk)) + (1� ⌘)KL(x|xk) = KL(x|g⌘↵(xk)� x1�⌘

k
)

where � denotes entry-wise multiplication of vectors. For small enough values of ⌘, [225] prove that the
algorithm converges to a local minimun of f↵(x).
In our implementation we use ⌘ = 0.01. We choose the smallest possible ↵ so that all entries of the argument
of the exponent in the definition of g↵ are in [�100, 100]. This choice is motivated by the requirement of
choosing small ↵ coupled with the breakdown of matlab’s exponent function at around e700. Note that this
choice requires ↵ = ↵k to update at each iteration. We find that with this choice of ↵ the regularization
term has little effect on the energy and we obtain final solutions which are close to being permutations. To
achieve a perfect permutation we project the final solution using the L2 projection. The L2 projection is
computed by minimizing a linear program as described, e.g., in [265].

Computing �̄min and �̄max We compute �̄min and �̄max by solving two maximal magnitude eigenvalue
problems: We first solve for the maximal magnitude eigenvalue of F TWF . If this eigenvalue is positive
then it is equal to �̄max. We can then find �̄min by translating our matrix by �̄max to obtain a positive-definite
matrix �̄maxI � F TWF whose maximal eigenvalue ⌘ is related to the minimal eigenvalue of the original
matrix via �̄min = �̄max � ⌘.
If the solution of the first maximal magnitude problem is negative then this eigenvalue is �̄min, and we can
use a process similar to the one described above to obtain �̄max.
Solving maximal magnitude eigenvalue problems requires repeated multiplication of vectors v 2 R(n�1)2

by the matrix F TWF , where W 2 Rn
2⇥n

2 and F 2 Rn
2⇥(n�1)2 . If W is sparse, computing Fv can

become a computational bottleneck. To avoid this problem, we note that F TWF has the same maximal
eigenvalue as the matrix FF TWFF T and so compute the maximal eigenvalue of the latter matrix. The
advantage of this is that multiplication by the matrix P = FF T can be computed efficiently:
Since P is the orthogonal projection onto Image(F), we can use the identity Pu = u � P?u where P? is
the projection onto the orthogonal complement of Image(F). The orthogonal complement is of dimension
2n� 1 and therefore P?u = F?F T

?u where F? 2 Rn
2⇥(2n�1).

We solve the maximal magnitude eigenvalue problems using Matlab’s function eigs.

116

Doctoral Dissertation Haggai Maron August 2019

11.6 Generalizations

Injective matching Our method can be applied with minor changes to injective matching. The input of
injective matching is k points sampled from the source shape S and n > k points sampled from the target
shape T , and the goal is to match the k points from S injectively to a subset of T of size k.
Matrices X 2 Rk⇥n representing injective matching have entries in {0, 1}, and have a unique unit entry in
each row, and at most one unit entry in each column. This set can be relaxed using the constraints:

X1 = 1 , 1TX 1T (86a)

1TX1 = k (86b)
X � 0 (86c)

We now add a row with positive entries to the variable matrix X to obtain a matrix X̄ 2 R(k+1)⇥n . The
original matrix X satisfies the injective constraints described above if X̄ satisfies

X̄1 = (n1 � k, 1, . . . , 1)T , 1T X̄ = 1T

X̄ � 0

These constraints are identical to the constraint defining DS, up to the value of the marginals which have no
affect on our algorithm. As a result we can solve injective matching problems without any modification of
our framework.

Partial matching The input of partial matching is n1, n2 points sampled from the source and target shape,
and the goal is to match k n1, n2 points from S injectively to a subset of T of size k. We do not pursue
this problem in this work as we did not find partial matching necessary for our applications. However we
believe our framework can be applied to such problems by adding a row and column to the matching matrix
X .

Adding linear constraints Modeling of different matching problems can suggest adding additional lin-
ear constraints on X that can be added directly to our optimization technique. Additional linear equality
constraints further decrease the dimension of the affine space X is constrained to and as a result make the
interval [�̄min, �̄max] smaller, leading to more accurate optimization. We note however that incorporating
linear constraints into the optimization method of [225] is not straightforward.

Upsampling Upsampling refers to the task of interpolating correspondences between r points sampled
from source and target metric spaces to a match between a finer sampling of k >> r source points and
n � k target points. We suggest two strategies for this problem: Limited support interpolation and greedy
interpolation.
Limited support interpolation uses the initially matched r points to rule out correspondences between the
finely sampled points. The method of ruling out correspondences is discussed in the section 11.11. We
enforce the obtained sparsity pattern by writing X = Xpermissible +Xforbidden, where the first matrix is zero
in all forbidden entries and the second is zero in all permissible entries. We then minimize the original
energy E(X) only on the permissible entries, and add a quadratic penalty for the forbidden entries. That is,
we minimize

E(Xpermissible) + ⇢ kXforbiddenk
2
F

117

Doctoral Dissertation Haggai Maron August 2019

choosing some large ⇢ > 0. The sparsity of Xpermissible enables minimizing this energy for large k, n for
which minimizing the original energy is intractable.
When k, n are large we use greedy interpolation. We match each source point si separately. We do this by
optimizing over correspondences between r + 1 source points and n target points, where the r + 1 points
are the r known points and the point si. Since there are only n � r such correspondences optimization can
be performed globally by checking all possible correspondences.

Optimization over doubly stochastic matrices Our main focus was on optimization problems over per-
mutations. However in certain cases the requested output from the optimization algorithm may be a doubly
stochastic matrix and not a permutation. When the energy E is non convex this still remains a non-convex
problem. For such optimization problems our method can be applied by taking samples ai from the interval
[�̄min, 0], since minimization of (84) with a = 0 is the problem to be solved while minimization of (84) with
a = �̄max forces a permutation solution.

11.7 Evaluation

In this section we evaluate our algorithm and compare its performance with relevant state of the art algo-
rithms. We ran all experiments on the 100 mesh pairs from the FAUST dataset [30] which were used in the
evaluation protocol of [50].

Comparison with [225] In figure 51(b) we compare our method for minimizing non-convex functionals
with the local minimization algorithm of [225]. Since this method is aimed at solving non-convex func-
tionals over doubly-stochastic matrices, we run our algorithm using samples in [�̄min, 0] as explained in
Section 11.6. We sample 200 points from each mesh using farthest point sampling [73], and optimize the
Gromov-Wasserstein (GW) functional advocated in [225], which amounts to choosing p from (81) to be
p(u, v) = (u � v)2. As local minimization depends on initialization we locally minimize 1000 times per
mesh pair, using 1000 different random initializations. The initializations are obtained by randomly gen-
erating a positive matrix in R200⇥200 with uniform distribution, and projecting the result onto the doubly
stochastic matrices using the Sinkhorn algorithm. As can be seen in the figure our algorithm, using only ten
iterations, was more accurate than all the local minima found using random initializations. As a baseline for
comparison we note that the difference in energy between randomly drawn permutations and our solution
was around 5000, while the difference in energy shown in the graph is around 500. Figure 52 visualizes the
advantages of the fuzzy maps obtained by our algorithm in this experiment over the best of the 1000 random
maps generated by [225].

Projection evaluation In figure 51(a) we examine how the result obtained from our projection method
is influenced by the number of points N sampled from [�̄min, �̄max]. We compared the behavior of our
relaxation with several different choices of N as well as with the standard L2 projection onto the set of per-
mutations. As expected, our projection is always better that the L2 projection, and the projection improves
as the number of samples is increased.

Comparison with other relaxations We compare our method with other relaxation based techniques. In
figure 51 (c)-(d) we compare our relaxation with the spectral relaxation, the DS+ relaxation, and the SDP
relaxation of [124]. In this experiment the energy we use is non-convex so DS is not applicable.

118

Doctoral Dissertation Haggai Maron August 2019

2 iters 5 iters

10 iters 100 iters

exp. num
0 50 100

ob
je

ct
iv

e
ob

je
ct

iv
e

0

1000

2500

DS++

0 50 100
-6

-3

0

DS++
DS
[Kezurer]

0 50 100
0

10

18

0 50 100
-200

-100

0

exp. num

exp. num exp. num

(a) (b)

(c) (d)

(e) (f)

0 50 100
0

500

1000
[Solomon 16]

exp. num

L2

spectral
DS+

[Kezurer]

ob
je

ct
iv

e

DS++

exp. num
0 50 1000

30

15

Figure 51: Evaluation of our algorithm. (a) compares the L2 projection with our projection. Even with only two
iterations our projection improves upon the L2 projection. Additional iterations yield better accuracy at the price of
time complexity. (b) compares minimization of the Gromov-Wasserstein distance with our algorithm and [225] with
1000 random initializations. In all cases we attain a lower objective value. The second row compares lower bounds
(c) and upper bounds (d) obtained by the DS++ algorithm, DS+, spectral, and [124]. As predicted by Theorem 16
our lower bounds and upper bounds are outperformed by [124] who are able to attain the ground truth in these cases,
but improve upon those of the remaining methods. The third row compares lower bounds (e) and upper bounds (f)
obtained by the DS++ algorithm, DS and [124] for the convex graph matching functional. The lower bound of the
DS++ algorithm modestly improves DS’s, while the upper bounds substantially improves the upper bounds of DS’s
L2 projection.

[Solomon 16] DS++ (fuzzy) DS++ (standard)

Figure 52: Optimization over fuzzy maps using [225] and the DS++ algorithm as described in Section 11.6. The best
fuzzy map obtained by [225] with 1000 random initializations is less accurate than our fuzzy map (middle), as our
map gives lower probability to mapping the right hand of the source to the left hand of the target. See also Figure 51
(b). The rightmost image shows the sharp map obtained by the standard DS++ algorithm.

119

Doctoral Dissertation Haggai Maron August 2019

We sampled 10 points from both meshes, and minimized the (non-convex) functional selected by [124],
which amounts to choosing p from (81) to be

p(u, v) = � exp

✓
�(u� v)2

�2

◆

We choose the parameter � = 0.2. For the minimization we used all four relaxations, obtaining a lower
bound for the optimal value, Figure 51 (c). We then projected the solutions obtained onto the set of permu-
tations, thus obtaining an upper bound, Figure 51 (d). For methods other than the DS++ algorithm we used
the L2 projection. In all experiments the upper and lower bounds provided by the SDP relaxation of [124]
were identical, thus proving that the SDP relaxation found the globally optimal solution. Additionally, in all
experiments the upper bound and lower bound provided by our relaxation were superior to those provided
by the spectral method, and our projection attained the global minimum in approximately 80% of the exper-
iments in contrast to 11% obtained by the L2 projection of the spectral method. The differences between
the spectral relaxation and the stronger DS+ relaxation were found to be negligible.
In figure 51(e)-(f) we perform the same experiment, but now we minimize the convex graph matching
functional E(X) = kAX �XBk

2
F

from [5] for which the classical DS relaxation is applicable. Here again
the ground truth is achieved by the SDP relaxation. Our relaxation can be seen to modestly improve the
lower bound obtained by the classical DS relaxation, while our projection method substantially improves
upon the standard projection.

11.8 Applications

We have tested our method for three applications: non-rigid shape matching, image arrangement, and coarse-
to-fine matching.

Non-rigid matching We evaluated the performance of our algorithm for non-rigid matching on the FAUST
dataset [30]. We compared to [50] which demonstrated superb state of the art results on this dataset (for
non learning-based methods). For a fair comparison we used an identical pipeline to [50], including their
isometric energy modeling and extrinsic regularization term. We first use the DS++ algorithm to match
n = 160, k = 150 points, then upsampled to n = 450, k = 420 using limited support interpolation and to
n = 5000, k = 1000 using greedy interpolation, as described in Section 11.6; the final point resolution is as
in [50].
Figure 53 depicts the results of the DS++ algorithm and [50]. As can be read from the graphs, our algo-
rithm compares favorably in both the inter and intra class matching scenarios in terms of cumulative error
distribution and average error. These results are consistent for both the convex relaxation part (top row)
and the upsampled final map (middle row); The graphs show our results both with our upsampling as de-
scribed above (denoted by DS++(1)) and the results of combining our relaxation with the upsampling of
[50] (DS++(2)). We find DS++(1) to be better on the inter class, and DS++(2) is marginally better on the
intra class. The error is calculated on a set of 52 ground truth points in each mesh as in [160]. Figure 47
(left), and 49 show typical examples of maps computed using the DS++ algorithm in this experiment.

Image arrangement The task of arranging image collections in a grid has received increasing attention in
recent years [198, 228, 82, 48]. Image arrangement is an instance of metric matching: the first metric space
is the collection of images and a dissimilarity measure defined between pairs of images; and the second,
target metric space is a 2D grid (generally, a graph) with its natural Euclidean metric.

120

Doctoral Dissertation Haggai Maron August 2019

0 0.1 0.2 0.3 0.4 0.5
Error

0.6

0.8

1

%
 C

or
re

sp
on

de
nc

es

[Chen et al. 2015]
DS++

0 0.05 0.1 0.15 0.2 0.25
Error

0.6

0.8

1

%
 C

or
re

sp
on

de
nc

es

0 0.1 0.2 0.3 0.4 0.5
Error

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25
Error

0.6

0.8

1

Convex Relaxation comparison

Final Map comparison

[Chen et al. 2015]

DS++ (1)
DS++ (2)

Inter-Model Intra-Model

Inter-Model Intra-Model

10 20 30 40 50
Experiment Number

0

0.1

0.2

A
ve

ra
ge

 E
rr

or

10 20 30 40 50
Experiment Number

0

0.1

0.2

Figure 53: Non-rigid matching. Cumulative and average errors achieved on the FAUST dataset [30] by the DS++ algo-
rithm compared to [50]. Top row compares only the convex relaxation part of both methods; bottom two rows compare
final maps after upsampling. DS++(1) uses our upsampling method and DS++(2) uses the upsampling method of [50].

121

Doctoral Dissertation Haggai Maron August 2019

dataset feature improvement rand average Fried mean our mean functional swaps? grid size

Random colors color 28.33% 0.478 0.259 0.198 Fried no 12
Random colors color 8.86% 0.478 0.219 0.197 Fried yes 12
Random colors color 3.46% 0.478 0.219 0.211 GW yes 12
SUN dataset color 2.05% 0.581 0.244 0.237 Fried no 10
SUN dataset color 0.57% 0.581 0.225 0.223 Fried yes 10
SUN dataset deep feature object 55.97% 0.433 0.345 0.295 Fried no 14
SUN dataset deep feature object 6.31% 0.433 0.300 0.292 Fried yes 14
LFW deep feature face 50.70% 0.422 0.355 0.320 Fried no 14
LFW deep feature face 2.81% 0.422 0.321 0.318 Fried yes 14
Illumination Raw L2 distance 59.08% 0.509 0.320 0.208 Fried no 10
Illumination Raw L2 distance 9.94% 0.509 0.232 0.204 Fried yes 10
Illumination Raw L2 distance 13.70% 0.527 0.273 0.238 Fried yes 10
Illumination Raw L2 distance 10.65% 0.518 0.259 0.231 Fried yes 10

Table 14: Image arrangement comparison. We compare DS++ to [82] in arranging different sets of images in a grid
with different affinity measures between images; see text for more details.

[82] suggested an energy functional for generating image arrangements, which are represented by a permu-
tation matrix X . Their choice of energy functional was supported by a user study. This energy functional
is:

E(X) = min
c>0

X

ijkl

��c · dik � d0
jl

��XijXkl (87)

where d, d0 are the distance measures between images and grid points respectively, and c is the unknown
scale factor between the two metric spaces. [82] suggested a two step algorithm to approximate the mini-
mizer of the above energy over the set of permutations: The first step is a dimensionality reduction, and the
second is linear assignment to a grid according to Euclidean distances. Fried et al.demonstrated significant
quantitative improvement over previous state of the art methods.
We perform image arrangement by using an alternative method for optimizing the energy (87). We fix c so
that the mean of d and d0 are the same, which leads to a quadratic matching energy which we optimize over
permutations using the DS++ algorithm.

Figure 54: Random lighting.

Table 14 summarizes quantitative comparison of the DS++ algorithm and
[82] on a collection of different image sets and dissimilarity measures.
Each row shows the mean energies over 100 experiments of Fried et
al.DS++, and random assignments which provide a baseline for compar-
ison; in each experiment we randomized a subset of images from the
relevant set of images and generated image arrangements using the two
methods. [82] suggested an optional post processing step in which ran-
dom swaps are generated and applied in case they reduce the energy; our
experiment measures the performance of both algorithms with and with-
out random swaps. The first set of experiments tries to arrange random
colors in a grid. The second set of experiments uses the mean image color
for images form the SUN database [254]. The third set uses the last layer
of a deep neural network trained for object recognition [49] as image fea-
tures, again for images in the SUN dataset. The fourth set of experiments
organizes randomly sampled images from the Labeled Faces in the Wild (LFW) dataset [111] according to
similar deep features taken from the net trained by [189]. For the last experiment, we rendered three 3D
models from the SHREC07 dataset [91] from various illumination directions and ordered them according to

122

Doctoral Dissertation Haggai Maron August 2019

the raw L2 distance between pairs of images.
Our algorithm outperformed [82] in all experiments (in some cases our algorithm achieved an improvement
of more than 50%). Figures 47, 50 and 57 show some image arrangements from these experiments. Note,
for example, how similar faces are clustered together in Figure 57 (a), and similar objects are clustered
in Figure 47 (right). Further note how the image arrangement in Figure 57 (b) nicely recovered the two
dimensional parameter of the lighting direction, where Figure 54 shows the input random lighting directions
renderings of a 3D models.

Coarse-to-fine matching We consider the problem of matching two
shapes S and T using sparse correspondences specified by the user. User
input can be especially helpful for highly non-isometric matching prob-
lems where semantic knowledge is often necessary for achieving high
quality correspondences. The inset shows such example where three
points (indicated by colored circles) are used to infer correspondences
between a horse and a giraffe.
We assume the user supplied a sparse set of point correspondences, si !
ti, i = 1, . . . , d, and the goal is to complete this set to a full correspon-
dence set between the shapes S = {s1, . . . , sn} and T = {t1, . . . , tk}.
Our general strategy is to use a linear term to enforce the user supplied constraints, and a quadratic term to
encourage maps with low distortion.
For a quadratic term we propose a ”log-GW” functional. This functional amounts to choosing p(u, v) =
dL(u, v)2 for the definition of W in (81), where dL is a metric on R+ defined by

dL(u, v) =
���log

u

v

���

This metric punishes for high relative distortion between u, v, and thus is more suitable for our cause than
the standard Euclidean metric used for the GW functional.
As a linear term we propose

L(X) = w

2

4
dX

i=1

(�Xii) +
dX

i=1

X

k,`

p (d(si, sq), d(ti, tr))Xk`

3

5

The first summand from the left penalizes matchings which violate the known correspondences, while the
second summand penalizes matchings which cause high distortion of distances to the user supplied points.
The parameter w controls the strength of the linear term. In our experiments we chose w = 0.01

��F TWF
��,

where
��F TWF

�� = max{|�̄min|, |�̄max|} is the spectral norm of the quadratic form..
We applied the algorithm for coarse-to-fine matching on the SHREC dataset [Shrec], using d = 3, 4, 5, 6
of the labeled ground truth points and evaluating the error of the obtained correspondence on the remaining
`� d points. The number of labeled points ` is class dependent and varies between 36 and 7.
Representative results are shown in Figure 56. The graph on the left hand side of Figure 55 shows that
our algorithm is able to use this minimal user supplied information to obtain significantly better results
than those obtained by the unaided BIM algorithm [BIM]. The graph compares the algorithms in terms of
cumulative error distribution over all 218 SHREC pairs for which BIM results are available.
The graph on the right hand side of Figure 55 shows our results outperform the algorithm presented in [225]
for matching aided by user supplied correspondences. Both algorithms were supplied with 6 ground truth

123

Doctoral Dissertation Haggai Maron August 2019

0 0.2 0.4 0.6 0.8 1
0

0.5

1

6 points
5 points
4 points
3 points
2 points
0 points (BIM)

Error

%
 C

or
re

sp
on

de
nc

es

0 0.2 0.4 0.6 0.8 1
0

0.5

1

DS++
[Solomon 2016](1)
[Solomon 2016](2)

Error

%
 C

or
re

sp
on

de
nc

es

Figure 55: Matching aided by sparse user correspondence. The left graphs shows that our algorithm can exploit user
supplied information to outperform state of the art unsupervised methods such as BIM. The right graph shows DS++
outperforms the algorithm of [225] for user aided matching.

points. We ran the algorithm of [225] matching n = 250, k = 250 points (we take n = k since [225]
does not support injective matching) and using the maximal-coordinate projection they chose to achieve a
permutation solution. These results are denoted by (2) in the graph. However we find that better results are
achieved when matching only 100 points, and when using the L2 projection. These results are denoted by
(1) in the graph.

Timing Typical running times of our optimization algorithm for the energy of [50] matching n = k = 50
points takes 6 seconds; n = k = 100 takes 26 seconds; and n = 160, k = 150 points takes around 2 minutes
(130 seconds). The precomputation of �̄min and �̄max with these parameters requires around 15 seconds, the
L2 projection requires 5 seconds, and the remaining time is required for our optimization algorithm.
Parameter values of n = k = 100 (as well as n = k = 122, 142) were used in the image arrangement task
from Section 11.8, and parameter values n = 160, k = 150 were used for our results on the FAUST dataset.
For the latter application we also upsampled to n = 450, k = 420 using limited support interpolation and
then upsampled to k = 1000, n = 5000 using greedy interpolation as described in Section 11.6.Limited
support interpolation required 117 seconds and greedy interpolation required 15 seconds. The total time for
this application is around 4.5 minutes.
The efficiency of our algorithm significantly improves if the product of the quadratic form’s matrix W
with a vector x 2 Rn

2 can be computed efficiently. This is illustrated by the fact that optimization of the
sparse functional we construct for the task of resolution improvement with n = 450 takes similar time as
optimization of the non-sparse functional of [50] with n = 160.
Another case where the product Wx can be computed efficiently is the GW or log-GW energy. In both
cases the product can be computed by multiplication of matrices of size n⇥n (see [225] for the derivation),
thus using O(n3) operations instead of the O(n4) operations necessary for general W . Using this energy,
matching n = 160 points to k = 150 points takes only 12 seconds, matching n = 270 points to k = 250
points takes 22 seconds, matching n = 500 to k = 500 takes 82 seconds, and for n = k = 1, 000 we require
around six minutes (368 seconds).
The efficiency of our algorithm depends linearly on N . Minimizing the GW energy with n = 270, k = 250
using N + 1 = 5 sample takes 12 seconds, approximately half of the time needed when using N + 1 = 10
samples. These parameters were used for our results on matching with user input described in Section 11.8.
For this task we also used greedy interpolation to obtain full maps between the shapes, which required an
additional 18 seconds. Overall this application required around half a minute.
Our algorithm was implemented on Matlab. All running times were computed using an Intel i7-3970X CPU
3.50 GHz.

124

Doctoral Dissertation Haggai Maron August 2019

Figure 56: Correspondences obtained using user input. Correspondences were obtained using 6 user input points,
with the exception of the correspondence between ants found using only 3 points. Note our method is applicable to
surfaces of arbitrary genus such as the genus 1 mugs.

11.9 Conclusions

We have introduced the DS++ algorithm for approximating the minimizer of a general quadratic energy
over the set of permutations. Our algorithms contains two components: (i) A quadratic program convex
relaxation that is guaranteed to be better than the prevalent doubly stochastic and spectral relaxations; and
(ii) A projection procedure that continuously changes the energy to recover a locally optimal permutation,
using the convex relaxation as an initialization. We have used recent progress in optimal transport to build
an efficient implementation to the algorithm.
The main limitation of our algorithm is that it does not achieve the global minima of the energies optimized.
Partially this is unavoidable and due to the computational hardness of our problem. However the experi-
mental results in Figure 51 show that accuracy can be improved by the SDP method of [124] which while
computationally demanding, can still be solved in polynomial time. Our future goal is to search for relax-
ations whose accuracy is close to those of [124] but which are also fairly scalable. One concrete direction
of research could be finding the ‘best’ quadratic programming relaxation in O(n2) variables.

11.10 Proofs
Proof of Lemma 10 The function f(X) = kXk

2
F

is strictly convex and satisfies f(X) = n for all extreme
points of DS. Therefore

E(X, b)� E(X, a) = (a� b) kXk
2
F
+ (b� a)n � 0

with equality iff X is a permutation.

Proof of Lemma 11 We omit the proof of the first part of the lemma since it is similar to, and somewhat
easier than, the proof of the second part.
To show equivalence of DS++ with (85) we show that every minimizer of DS++ defines a feasible point for
(85) with equal energy and vice versa.
Let x be the minimizer of E(X, �̄min) over the doubly stochastic matrices and let v be the eigenvector of
F TWF of unit Euclidean norm corresponding to its minimal eigenvalue �̄min. Denote u = Fv. We define

125

Doctoral Dissertation Haggai Maron August 2019

Figure 57: Generating automatic image arrangements with the DS++ algorithm. (a) Using deep features from a
face recognition neural network cluster similar faces together, e.g., bald men (faces are picked at random from the
LFW [111] dataset). (b) Automatic image arrangement of images of a 3D model with different lighting. (Images
were randomly picked from a 30x30 noisy grid of illumination directions.) Note how the two dimensional lighting
direction field is recovered by the DS++ algorithm: upper-right illuminated model image landed top-right in the grid,
and similarly the other corners; images that are placed lower in the layout present more frontal illumination.

Y = xxT+↵uuT , where we choose↵ � 0 so that (85b) holds. This is possible since tr(xxT) = kXk
2
F
 n.

Further note that Y also satisfies (85f) since ↵ � 0, and (85e) since

AY = AxxT + ↵AuuT = bxT + ↵A(Fv)(Fv)T = bxT

where we used the fact that Fv is a solution to the homogeneous linear equation Ax = 0. Finally the energy
satisfies (ignoring the constant d)

E(X,Y) = trWY + cTx

= xTWx+ ↵vTF TWFv + cTx

= xTWx+ ↵�̄min + cTx

= xTWx+ (n� kXk
2
F
)�̄min + cTx

= E(X, �̄min)

Now let (X,Y) be a minimizer of (85), we show that x is a feasible solution of our relaxation with the same
energy. In fact due to the previous claim it is sufficient to show that E(X, �̄min) E(X,Y). The feasibility
of X is clear since it is already DS. Next, denote

W� = W � �̄minI

then (ignoring the constant d)

E(X, �̄min) = trW�xx
T + cTx+ �̄minn

(⇤)
 trW�Y + cTx+ �̄minn

(85b)
= tr WY + cTx = E(X,Y)

The inequality (⇤) follows from the fact that A(Y � xxT) = 0 due to (85d),(85e) and therefore since FF T

is the projection onto the kernel of A:

FF T (Y � xxT) = Y � xxT = (Y � xxT)FF T

126

Doctoral Dissertation Haggai Maron August 2019

and so (⇤) follows from

trW�(Y � xxT) = trW�FF T (Y � xxT)FF T

tr[F TW�F][F T (Y � xxT)F] � 0

where the last inequality follows from the fact that the two matrices in square brackets are positive semi-
definite due to the definition of �̄min and (85f).
We now prove the third part of the lemma:

Comparison with SDP relaxation The SDP relaxation of [124] is

max
Y

trWY + cTx+ d (88a)

s.t. trY = n (88b)
x � 0 (88c)
Ax = b (88d)

Y ⌫ xxT (88e)
Y � 0 (88f)
X

qrst

Yqrst = n2 (88g)

Yqrst

8
><

>:

0, if q = s, r 6= t

0, if r = t, q 6= s

min {Xqr, Xst} , otherwise

(88h)

where Yqrst is the entry replacing the quadratic monomial XqrXst. We note this relaxation contains all con-
straints from the SDP relaxation (85) with the exception of (85e). It also contains the additional constraints
(88f)-(88h) which do not appear in (85). Thus to show that [124] is tighter than our relaxation it is sufficient
to show that (85e) is implied by the other constraints of [124]. We recall that (85e) represent all constraints
obtained by multiplying linear equality constraints by a linear monomial.
For a quadratic polynomial

g(x) = xTWx+ cTx+ e

let us denote by ḡ(x, Y) the linearized polynomial

ḡ(x, Y) = trWY + cTx+ e

We will use the following property of SDP relaxations (see [70]): If a quadratic polynomial g is of the form
g = p2 then

1. For any feasible x, Y we have ḡ(x, Y) � 0.

2. If ḡ(x, Y) = 0 is satisfied for all feasible x, Y , then for any quadratic f of the form f = pq we have
f̄(x, Y) = 0.

Accordingly, it is sufficient to show that the squares gq = p2q , hr = m2
r of all the linear equality polynomials

pq(X) =
X

r

Xqr � 1 , mr(X) =
X

r

Xqr � 1

127

Doctoral Dissertation Haggai Maron August 2019

satisfy ḡq = 0, h̄r = 0. We obtain ḡq = 0 from

0 ḡq(x, Y) =
X

r,t

Yqrqt � 2
X

r

Xqr + 1

(88h)

X

r

Xqr � 2
X

r

Xqr + 1 = 0

the proof that h̄r = 0 is identical.

11.11 Sparsity pattern for improving matching resolution

We construct a sparsity pattern for the task of matching s1, . . . , sk to t1, . . . , tn using known correspon-
dences ŝ` 7! t̂`, ` = 1, . . . , r.
For each si we use the following procedure to determine which correspondence will be forbidden: We find
the five matched points ŝ`1 , . . . , ŝ`5 which are closest to si and compute the geodesic distance of these points
from si. This gives us a feature vector v 2 R5. We then compute the geodesic distances of each of the points
tj , j = 1, . . . , n from the matched points t̂`1 , . . . t̂`5 corresponding to the five closets points to si. This gives
us n feature vectors vj 2 R5. For tj to be a viable match we require that kvj � vk2 be small. We therefore
allow the top 20% of the correspondences according to this criteria.
To symmetrize this process, we use the same procedure to find permissible matches for each tj , and then
select as permissible all matches si 7! tj which were found permissible either when starting from si or
when starting from tj .

128

Doctoral Dissertation Haggai Maron August 2019

12 Concave graph matching

This section is based on [156].

12.1 Introduction

Graph matching is a generic and popular modeling tool for problems in computational sciences such as
computer vision [25, 271, 206, 27], computer graphics [86, 125], medical imaging [100], and machine
learning [233, 113, 56]. In general, graph matching refers to several different optimization problems of the
form:

min
X

E(X) s.t. X 2 F (89)

where F ⇢ Rn⇥n0 is a collection of matchings between vertices of two graphs GA and GB , and E(X) =
[X]TM [X] + aT [X] is usually a quadratic function in X 2 Rn⇥n0 ([X] 2 Rnn0⇥1 is its column stack).
Often, M quantifies the discrepancy between edge affinities exerted by the matching X . Edge affinities are
represented by symmetric matrices A 2 Rn⇥n, B 2 Rn0⇥n0 . Maybe the most common instantiation of (89)
is

E1(X) = kAX �XBk
2
F

(90)

and F = ⇧n, the matrix group of n ⇥ n permutations. The permutations X 2 ⇧n represent bijections
between the set of (n) vertices of GA and the set of (n) vertices of GB . We denote this problem as GM.
From a computational point of view, this problem is equivalent to the quadratic assignment problem, and
as such is an NP-hard problem [45]. A popular way of obtaining approximate solutions is by relaxing its
combinatorial constraints [150].
A standard relaxation of this formulation (e.g. [9, 4, 76]) is achieved by replacing ⇧n with its convex hull,
namely the set of doubly-stochastic matrices DS = hull(F) =

�
X 2 Rn⇥n

| X1 = 1, XT1 = 1, X � 0

.
The main advantage of this formulation is the convexity of the energy E1; the main drawback is that often
the minimizer is not a permutation and simply projecting the solution onto ⇧n doesn’t take the energy into
account resulting in a suboptimal solution. The prominent Path Following algorithm [265] suggests a better
solution of continuously changing E1 to a concave energy E0 that coincide (up to an additive constant)
with E1 over the permutations. The concave energy E0 is called concave relaxation and enjoys three key
properties: (i) Its solution set is the same as the GM problem. (ii) Its set of local optima are all permutations.
This means no projection of the local optima onto the permutations is required. (iii) For every descent
direction, a maximal step is always guaranteed to reduce the energy most.
[72, 27] suggest a similar strategy but starting with a tighter convex relaxation. Another set of works [241,
153, 238, 33] have considered the energy

E2(X) = �tr(BXTAX) (91)

over the doubly-stochastic matrices, DS, as well. Note that both energies E1, E2 are identical (up to an
additive constant) over the permutations and hence both are considered relaxations. However, in contrast to
E1, E2 is in general indefinite, resulting in a non-convex relaxation. [241, 153] suggest to locally optimize
this relaxation with the Frank-Wolfe algorithm and motivate it by proving that for the class of ⇢-correlated
Bernoulli adjacency matrices A,B, the optimal solution of the relaxation almost always coincides with the
(unique in this case) GM optimal solution. [238, 33] were the first to make the useful observation that E2

is itself a concave relaxation for some important cases of affinities such as heat kernels and Gaussians. This
leads to an efficient local optimization using the Frank-Wolfe algorithm and specialized linear assignment
solvers (e.g., [28]).

129

Doctoral Dissertation Haggai Maron August 2019

In this section, we analyze and generalize the above works and introduce the concepts of conditionally
concave and probably conditionally concave energies E(X). Conditionally concave energy E(X) means
that the restriction of the Hessian M of the energy E to the linear space

lin(DS) =
�
X 2 Rn⇥n

| X1 = 0, XT1 = 0

(92)

is negative definite. Note that lin(DS) is the linear part of the affine-hull of the doubly-stochastic matrices,
denoted a↵(DS). We will use the notation M |lin(DS) to refer to this restriction of M , and consequently
M |lin(DS) � 0 means vTMv < 0, for all 0 6= v 2 lin(DS). Our first result is proving there is a large class
of affinity matrices resulting in conditionally concave E2. In particular, affinity matrices constructed using
positive or negative definite functions7 will be conditionally concave.

Theorem 17. Let � : Rd
! R, : Rs

! R be both conditionally positive (or negative) definite functions
of order 1. For any pair of graphs with affinity matrices A,B 2 Rn⇥n so that

Aij = �(xi � xj), Bij = (yi � yj) (93)

for some arbitrary {xi}i2[n] ⇢ Rd, {yi}i2[n] ⇢ Rs, the energy E2(X) is conditionally concave, i.e., its
Hessian M |lin(DS) � 0.

One useful application of this theorem is in matching graphs with Euclidean affinities, since Euclidean
distances are conditionally negative definite of order 1 [248]. That is, the affinities are Euclidean distances
of points in Euclidean spaces of arbitrary dimensions,

Aij = kxi � xjk2 , Bij = kyi � yjk2 , (94)

where {xi}i2[n] ⇢ Rd, {yi}i2[n] ⇢ Rs. This class contains, besides Euclidean graphs, also affinities made
out of distances that can be isometrically embedded in Euclidean spaces such as diffusion distances [55],
distances induced by deep learning embeddings (e.g. [215]) and Mahalanobis distances. Furthermore, as
shown in [31] the spherical distance, Aij = dSd(xi, xj), is also conditionally negative definite over the
sphere and therefore can be used in the context of the theorem as-well.
Second, we generalize the notion of conditionally concave energies to probably conditionally concave ener-
gies. Intuitively, the energy E is called probably conditionally concave if it is rare to find a linear subspace
D of lin(DS) so that the restriction of E to it is convex, that is M |D ⌫ 0. The primary motivation in consid-
ering probably conditionally concave energies is that they enjoy (with high probability) the same properties
as the conditionally concave energies, i.e., (i)-(iii). Therefore, locally minimizing probably conditionally
concave energies over F can be done also with the Frank-Wolfe algorithm, with guarantees (in probability)
on the feasibility of both the optimization result and the solution set of this energy.
A surprising fact we show is that probably conditionally concave energies are pretty common and include
Hessian matrices M with almost the same ratio of positive to negative eigenvalues. The following theorem
bounds the probability of finding uniformly at random a linear subspace D such that the restriction of
M 2 Rm⇥m to D is convex, i.e., M |D � 0. The set of d-dimensional linear subspaces of Rm is called the
Grassmannian Gr(d,m) and it has a compact differential manifold structure and a uniform measure Pr.

Theorem 18. Let M 2 Rm⇥m be a symmetric matrix with eigenvalues �1, . . . ,�m. Then, for all t 2

(0, 1
2�max

):

7In a nutshell, positive (negative) definite functions are functions that when applied to differences of vectors produce positive
(negative) definite matrices when restricted to certain linear subspaces; this notion will be formally introduced and defined in
Section 12.2.

130

Doctoral Dissertation Haggai Maron August 2019

Pr(M |D ⌫ 0)
mY

i=1

(1� 2t�i)
� d

2 , (95)

where M |D is the restriction of M to the d-dimensional linear subspace defined by D 2 Gr(d,m) and the
probability is taken with respect to the Haar probability measure on Gr(d,m).

For the case d = 1 the probability of M |D ⌫ 0 can be interpreted via distributions of quadratic forms.
Previous works aimed at calculating and bounding similar probabilities [114, 208] but in different (more
general) settings providing less explicit bounds. As we will see, the case d > 1 quantifies the chances of
local minima residing at high dimensional faces of hull(F).
As a simple use-case of theorem 18, consider a matrix where 51% of the eigenvalues are �1 and 49% are
+1; the probability of finding a convex direction of this matrix, when the direction is uniformly distributed,
is exponentially low in the dimension of the matrix. As we (empirically) show, one class of problems that in
practice presents probably conditionally concave E2 are when the affinities A,B describe geodesic distances
on surfaces.
Probable concavity can be further used to prove theorems regarding the likelihood of finding a local min-
imum outside the matching set F when minimizing E over a relaxed matching polytope hull(F). We
will show the existence of a rather general probability space (in fact, a family) (⌦m, Pr) of Hessians
M 2 Rm⇥m

2 ⌦m with a natural probability measure, Pr, so that the probability of local minima of
E(X) to be outside F is very small. This result is stated and proved in theorem 19. An immediate con-
clusion of this result provides a proof of a probabilistic version of properties (i) and (ii) stated above for
energies drawn from this distribution. In particular, the global minima of E(X) over DS coincide with
those over ⇧n with high probability. The following theorem provides a general result in the flavor of [153]
for a large class of quadratic energies.

Theorem 20. Let E be a quadratic energy with Hessian drawn from the probability space (⌦m, Pr). The
chance that a local minimum of minX2DSE(X) is outside ⇧n is extremely small, bounded by exp(�c1n2),
for some constant c1 > 0.

Third, when the energy of interest E(X) is not probably conditionally concave over lin(F) there is no
guarantee that the local optimum of E over hull(F) is in F . We devise a simple variant of the Frank-Wolfe
algorithm, replacing the standard line search with a concave search. Concave search means subtracting from
the energy E convex parts that are constant on F (i.e., relaxations) until an energy reducing step is found.

12.2 Conditionally concave energies
We are interested in the application of the Frank-Wolfe algorithm [81] for locally optimizing E2 (potentially
with a linear term) from (91) over the doubly-stochastic matrices:

min
X

E(X) (96a)

s.t. X 2 DS (96b)

where E(X) = �[X]T (B ⌦A)[X] + aT [X]. For completeness, we include a simple pseudo-code:
input: X0 2 hull(F)

while not converged do
compute step: X1 = minX2DS�2[X0]T (B ⌦A)[X] + aT [X];
line-search: t0 = argmint2[0,1]E((1� t)X0 + tX1) ;
apply step: X0 = (1� t0)X0 + t0X1 ;

end
Algorithm 2: Frank-Wolfe algorithm.

131

Doctoral Dissertation Haggai Maron August 2019

Definition 7. We say that E(X) is conditionally concave if it is concave when restricted to the linear space
lin(F), the linear part of the affine-hull hull(F).

If E(X) is conditionally concave we have that properties (i)-(iii) of concave relaxations detailed above hold.
In particular Algorithm 2 would always accept t0 = 1 as the optimal step, and therefore it will produce a
series of feasible matchings X0 2 ⇧n and will converge after a finite number of steps to a permutation local
minimum X⇤ 2 ⇧n of (96). Our first result in this section provides sufficient condition for W = �B⌦A to
be concave. It provides a connection between conditionally positive (or negative) definite functions [248],
and negative definiteness of �B ⌦A:

Definition 8. A function � : Rd
! R is called conditionally positive definite of order m if for all pair-

wise distinct points {xi}i2[n] ⇢ Rd and all 0 6= ⌘ 2 Rn satisfying
P

i2[n] ⌘ip(xi) = 0 for all d-variate
polynomials p of degree less than m, we have

P
n

ij=1 ⌘i⌘̄j�(xi � xj) > 0.

Specifically, � is conditionally positive definite of order 1 if for all pairwise distinct points {xi}i2[n] ⇢ Rd

and zero-sum vectors 0 6= ⌘ 2 Rd we have
P

n

ij=1 ⌘i⌘̄j�(xi � xj) > 0. Conditionally negative definiteness
is defined analogously. Some well-known functions satisfy the above conditions, for example: �kxk2, �

(c2+kxk22)
� for � 2 (0, 1] are conditionally positive definite of order 1, while the functions exp(�⌧2kxk22)

for all ⌧ , and c30 = (1�kxk22)+ are conditionally positive definite of order 0 (also called just positive definite
functions). Note that if� is conditionally positive definite of order m, it is also conditionally positive definite
of any order m0 > m. Lastly, as shown in [31], spherical distances �d(x, x0)� are conditionally positive
semidefinite for � 2 (0, 1], and exp(�⌧2d(x, x0)�) are positive definite for � 2 (0, 1] and all ⌧ . We now
prove:

Theorem 17. Let � : Rd
! R, : Rs

! R be both conditionally positive (or negative) definite functions
of order 1. For any pair of graphs with affinity matrices A,B 2 Rn⇥n so that

Aij = �(xi � xj), Bij = (yi � yj) (97)

for some arbitrary {xi}i2[n] ⇢ Rd, {yi}i2[n] ⇢ Rs, the energy E2(X) is conditionally concave, i.e., its
Hessian M |lin(DS) � 0.

Lemma 12 (orthonormal basis for lin(DS)). If the columns of F 2 Rn⇥(n�1) constitute an orthonormal
basis for the linear space 1? =

�
x 2 Rn

| xT1 = 0

then the columns of F ⌦ F are an orthonormal basis
for lin(DS).

Proof. First, (F ⌦ F)T (F ⌦ F) = (F T
⌦ F T)(F ⌦ F) = (F TF) ⌦ (F TF) = In�1 ⌦ In�1 = I(n�1)2 .

Therefore F ⌦ F is full rank with (n � 1)2 orthonormal columns. Any column of F ⌦ F is of the form
Fi ⌦ Fj , where Fi, Fj are the ith and jth columns of F , respectively. Now, reshaping Fi ⌦ Fj back into an
n ⇥ n matrix using the inverse of the bracket operation we get X =]Fi ⌦ Fj [= FjF T

i
which are clearly in

lin(DS). Lastly, since the dimension of lin(DS) is (n� 1)2 the lemma is proved.

Proof. (of Theorem 17) Let A,B 2 Rn⇥n be as in the theorem statement. Checking that E(X) is condi-
tionally concave amounts to restricting the quadratic form �[X]T (B⌦A)[X] to lin(DS): �(F ⌦F)T (B⌦

A)(F⌦F) = �(F TBF)⌦(F TAF) � 0, where we used Lemma 12 and the fact that�, are conditionally
positive definite of order 1.

Corollary 3. Let A,B be Euclidean distance matrices then the solution set of Problem (96) and GM coin-
cide.

132

Doctoral Dissertation Haggai Maron August 2019

12.3 Probably conditionally concave energies

Although Theorem 17 covers a rather wide spectrum of instantiations of Problem (96) it definitely does not
cover all interesting scenarios. In this section we would like to consider a more general energy E(X) =
[X]TM [X] + aT [X], X 2 Rn⇥n, M 2 Rn

2⇥n
2 and the optimization problem:

min
X

E(X) (98a)

s.t. X 2 hull(F) (98b)

We assume that F = ext(hull(F)), namely, the matchings are extreme points of their convex hull (as
happens e.g., for permutations F = ⇧n). When the restricted Hessians M |lin(F) are ✏�negative definite (to
be defined soon) we will call E(X) probably conditionally concave.
Probably conditionally concave energies E(X) will possess properties (i)-(iii) of conditionally concave
energies with high probability. Hence they allow using Frank-Wolfe algorithms, such as Algorithm 2, with
no line search (t0 = 1) and achieve local minima in F (no post-processing is required). In addition, we prove
that certain classes of probably conditionally concave relaxations have no local minima that are outside F ,
with high probability. In the experiment section we will also demonstrate that in practice this algorithm
works well for different choices of probably conditionally concave energies. Popular energies that fall into
this category are, for example, (91) with A,B geodesic distance matrices or certain functions thereof.
We first make some preparations. Recall the definition of the Grassmannian Gr(d,m): It is the set of d-
dimensional linear subspaces in Rm; it is a compact differential manifold defined by the quotient O(m)/O(d)⇥
O(m � d), where O(s) is the orthogonal group in Rs. The orthogonal group O(m) acts transitively on
Gr(d,m) by taking an orthogonal basis of any d-dimensional linear subspace to an orthogonal basis of a
possibly different d-dimensional subspace. On O(m) there exists Haar probability measure, that is a prob-
ability measure invariant to actions of O(m). The Haar probability measure on O(m) induces an O(m)-
invariant (which we will also call Haar) probability measure on G(k,m). We now introduce the notion of
✏-negative definite matrices:

Definition 9. A symmetric matrix M 2 Rm⇥m is called ✏-negative definite if the probability of finding
a d-dimensional linear subspace D 2 G(d,m) so that A is convex over D is smaller than ✏d. That is,
Pr({M |D ⌫ 0}) ✏d where the probability is taken with respect to a Haar O(m)-invariant measure on the
Grassmannian Gr(d,m).

One way to interpret M |D, the restriction of the matrix M to the linear subspace D, is to consider a matrix
F 2 Rm⇥d where the columns of F form a basis to D and consider M |D = F TMF . Clearly, negative
definite matrices are ✏-negative definite for all ✏ > 0. The following theorem helps to see what else this
definition encapsulates:

Theorem 18. Let M 2 Rm⇥m be a symmetric matrix with eigenvalues �1, . . . ,�m. Then, for all t 2

(0, 1
2�max

):

Pr(M |D ⌫ 0)
mY

i=1

(1� 2t�i)
� d

2 , (99)

where M |D is the restriction of M to the d-dimensional linear subspace defined by D 2 Gr(d,m) and the
probability is taken with respect to the Haar probability measure on Gr(d,m).

Proof. Let F be an m⇥d matrix of i.i.d. standard normal random variables N (0, 1). Let Fj , j 2 [d], denote
the jth column of F . The multivariate distribution of F is O(m)-invariant in the sense that for a subset
A ⇢ Rm⇥d, Pr(RA) = Pr(A) for all R 2 O(m). Therefore, Pr(M |D ⌫ 0) = Pr(F TMF ⌫ 0). Next,

133

Doctoral Dissertation Haggai Maron August 2019

Pr(F TMF ⌫ 0) Pr(\d

j=1

n
F T

j
MFj � 0

o
) =

Q
d

j=1 Pr(F T

j
MFj � 0), where the inequality is due to

the fact that a positive semidefinite matrix necessarily has non-negative diagonal, and the equality is due to
the independence of the random variables F T

j
MFj , j 2 [d]. We now calculate the probability Pr(F T

1 MF1)

which is the same for all columns j 2 [d]. For brevity let X = (X1, X2, . . . , Xm)T = F1. Let M = U⇤UT ,
where U 2 O(m) and ⇤ = diag(�1,�2, . . . ,�m) be the spectral decomposition of M . Since UX has the
same distribution as X we have that Pr(XTMX � 0) = Pr(XT⇤X � 0) = Pr(

P
m

i=1 �iX
2
i

� 0).
Since X2

i
⇠ �2(1) we have transformed the problem into a non-negativity test of a linear combination of

chi-squared random variables. Using the Chernoff bound we have for all t > 0:

Pr

mX

i=1

�iX
2
i � 0

!
 E

⇣
et

Pm
i=1 �iX

2
i

⌘
=

mY

i=1

E
h
et�iX

2
i ,
i

where the last equality follows from the independence of X1, ..., Xm. To finish the proof we note that
E
h
et�iX

2
i

i
is the moment generating function of the random variable X2

i
sampled at t�i which is known

to be (1 � 2t�i)�1/2 for t�i < 1
2 which means that we can take t < 1

2�i
when �i 6= 0 and disregard all

�i = 0.
Theorem 18 shows that there is a concentration of measure phenomenon when the dimension m of the
matrix M increases. For example consider

⇤m,p =
�

(1�p)mz }| {
�1,�2, . . .,

pmz }| {
µ1, µ2, . . .

�
, (100)

where �i �b, b > 0 are the negative eigenvalues; 0 µi a, a > 0 are the positive eigenvalues and
the ratio of positive to negative eigenvalues is a constant p 2 (0, 1/2). We can bound the r.h.s. of (99)
with (1 + 2bt)�

(1�p)m
2 (1 � 2at)�

pm
2 . Elementary calculus shows that the minimum of this function over

t 2 (0, 1/2a) gives:

Pr(v
tMv � 0)

a1�pbp

a+b

2

1

2
(1� p)p�1p�p

!m
2

, (101)

0 0.1 0.2 0.3 0.4 0.5
p

0.5

0.6

0.7

0.8

0.9

1where v is uniformly distributed on the unit sphere in Rm. The function 1
2(1 �

p)p�1p�p is shown in the inset and for p < 1/2 it is strictly smaller than 1. The
term a

1�p
b
p

(a+b)/2 is the ratio of the weighted geometric mean and the arithmetic mean.
Using the weighted arithmetic-geometric inequality it can be shown that these terms
is at-most 1 if a b. To summarize, if a b and p < 1/2 the probability to find a
convex (positive) direction in M is exponentially decreasing in m, the dimension of the matrix. One simple
example is taking a = b = 1, p = 0.49 which shows that considering the matrices

U
� 0.51mz }| {
�1,�1, . . . ,�1,

0.49mz }| {
1, 1, . . . , 1

�
UT

it will be extremely hard to get in random a convex direction in dimension m ⇡ 3002, i.e., the probability
will be ⇡ 4 · 10�5 (this is a low dimension for a matching problem where m = (n� 1)2).
Another consequence that comes out of this theorem (in fact, its proof) is that the probability of finding a
linear subspace D 2 Gr(d,m) for which the matrix M is positive semidefinite is bounded by the probability
of finding a one-dimensional subspace D1 2 Gr(1,m) to the power of d. Therefore the d exponent in
Definition 9 makes sense. Namely, to show a symmetric matrix M is ✏-negative definite it is enough to
check one-dimensional linear subspaces. An important implication of this fact and one of the motivations

134

Doctoral Dissertation Haggai Maron August 2019

for Definition 9 is that finding local minima at high dimensional faces of the polytope hull(F) is much less
likely than at low dimensional faces.
Next, we would like to prove Theorem 19 that shows that for natural probability space of Hessians {M} the
local minima of (98) are with high probability in F , e.g., permutations in case that F = ⇧n. We therefore
need to devise a natural probability space of Hessians. We opt to consider Hessians of the form discussed
above, namely

⌦m =
�
U⇤m,pU

T
| U 2 O(m)

, (102)

where ⇤m,p is defined in (100). The probability measure over ⌦m is defined using the Haar probability
measure on O(m), that is for a subset A ⇢ ⌦m we define Pr(A) = Pr(

�
U 2 O(m) | U⇤m,pUT

2 A

),

where the probability measure on the r.h.s. is the probability Haar measure on O(m). Note that (102) is
plausible since the input graphs GA, GB are usually provided with an arbitrary ordering of the vertices.
Writing the quadratic energy E resulted from a different ordering P,Q 2 ⇧n of the vertices of GA, GB

(resp.) yields the Hessian H 0 = (Q⌦ P)(B ⌦A)(Q⌦ P)T , where Q⌦ P 2 ⇧m ⇢ O(m). This motivates
defining a Hessian probability space that is invariant to O(m). We prove:

Theorem 19. If the number of extreme points of the polytope hull(F) is bounded by exp(m1�✏), for some
fixed arbitrary ✏ > 0, and the Hessian of E is drawn from the probability space (⌦m, Pr), the chance that
a local minimum of minX2hull(F)E(X) is outside F is extremely small, bounded by exp(�c1m), for some
constant c1 > 0.

Proof. Denote all the edges (i.e., one-dimensional faces) of the polytope P = hull(F) by indices ↵. Even if
every two extreme points of P are connected by an edge there could be at most exp(2m1�✏) edges. A local
minimum X⇤ 2 P to (98) that is not in F necessarily lies in the (relative) interior of some face f of P of
dimension at-least one. The restriction of the Hessian M of E(X) to lin(f) is therefore necessarily positive
semidefinite. This implies there is a direction v↵ 2 Rm, parallel to an edge ↵ of P so that vT↵Mv↵ � 0.
Let us denote by X↵ the indicator random variable that equals one if vT↵Mv↵ � 0 and zero otherwise. If
X↵ = 1 we say that the edge ↵ is a critical edge for M . Let us denote X =

P
↵
X↵ the random variable

counting critical edges. The expected number of critical edges is E(X) =
P

↵
Pr(vT↵Mv↵ � 0). We use

Theorem 18, in particular (101), to bound the summands.
Since Pr(vT↵Mv↵ � 0) = Pr(vT↵U⇤m,pUT v↵ � 0) and UT v↵ is distributed uniformly on the unit sphere
in Rm, we can use (101) to infer that Pr(vT↵Mv↵ � 0) ⌘m/2 for some ⌘ 2 [0, 1) and therefore E(X)
exp(m log ⌘/2)

P
↵
1 (note that log ⌘ < 0). Incorporating the bound on edge number in P discussed above

we get E(X) exp(log ⌘2 m+2m1�✏) exp(�c1m) for some constant c1 > 0. Lastly, as explained above,
the event of a local minimum not in F is contained in X � 1 and by Markov’s inequality we finally get
Pr(X � 1) E(X) exp(�c1m).

Let us use this theorem to show that the local optimal solutions to Problem (98) with permutations as
matchings, F = ⇧n, are with high probability permutations:

Theorem 20. Let E be a quadratic energy with Hessian drawn from the probability space (⌦m, Pr). The
chance that a local minimum of minX2DSE(X) is outside ⇧n is extremely small, bounded by exp(�c1n2),
for some constant c1 > 0.

Proof. In this case the polytope DS = hull(⇧n) is in the (n � 1)2 dimensional linear subspace lin(DS)
of Rn⇥n. It therefore makes sense to consider the Hessians’ probability space restricted to lin(DS), that is
considering M |lin(DS) and the orthogonal subgroup acting on it, O((n � 1)2). In this case m = (n � 1)2.
The number of vertices of DS is the number of permutations which by Stirling’s bound we have n!

exp(1�n+log n(n+1/2)) exp((n�1)1.1). Hence the number of edges is bounded by exp(2(n�1)1.1),
as required.

135

Doctoral Dissertation Haggai Maron August 2019

Lastly, Theorems 19 and 20, can be generalized by considering d-dimensional faces of the polytope:

Theorem 21. If the number of extreme points of the polytope hull(F) is bounded by exp(m1�✏), for some
fixed arbitrary ✏ > 0, and the Hessian of E is drawn from the probability space (⌦m, Pr), the chance that
a local minimum of minX2hull(F)E(X) is in the relative interior of a d-dimensional face of hull(F) is
extremely small, bounded by exp(�c1dm), for some constant c1 > 0.

This theorem is proved similarly to Theorem 19 by considering indicator variables X↵ for positive semidef-
inite M |lin(↵) where ↵ stands for a d-dimensional face in hull(F). This generalized theorem has a practical
implication: local minima are likely to be found on lower dimensional faces.

12.4 Graph matching with one sided permutations
In this section we examine an interesting and popular graph matching (89) instance, where the matchings
are the one-sided permutations, namely F =

�
X 2 {0, 1}n⇥n0 | X1 = 1

. That is F are well-defined

maps from graph GA with n vertices to GB with n0 vertices. This modeling is used in the template and
partial matching cases. Unfortunately, in this case, standard graph matching energies E(X) are not probably
conditionally concave over lin(F). Note that lin(DS) $ lin(F).
We devise a variation of the Frank-Wolfe algorithm using a concave search procedure. That is, in each
iteration, instead of standard line search we subtract a convex energy from E(X) that is constant on F until
we find a descent step. This subtraction is a relaxation of the original problem (89) in the sense it does not
alter (up to a global constant) the energy values at F .
The algorithm is summarized in Algorithm 3 and is guaranteed to output a feasible solution in F . The linear
program in each iteration over hull(F) has a simple closed form solution. Also, note that in the inner loop
only n different � values should be checked. Details can be found in the supplementary materials.

input: X0 2 hull(F)

while not converged do
while energy not reduced do

add concave energy Mcurr = M � �⇤;
compute step: X1 = minX2hull(F)[X0]TMcurr[X];
increase �;

end
Update current solution X0 = X1 and set � = 0;

end
Algorithm 3: Frank-Wolfe with a concave search.

12.5 Experiments
Bound evaluation: Table 15 evaluates the probability bound (99) for Hessians M 2 R1002⇥1002 of E2(X)
using affinities A,B defined by functions of geodesic distances on surfaces. Functions that are conditionally
negative definite or semi-definite in the Euclidean case: geodesic distances d(x, y), its square d(x, y)2,
and multi-quadratic functions (1 + d(x, y)2)

1
10 . Functions that are positive definite in the Euclidean case:

c30(kxk2) = (1 � kxk2)+, c31(kxk2) = (1 � kxk2)
4
+(4 kxk2 + 1) and exp(�⌧2kxk22) (note that the

last function was used in [238]). We also provide the empirical chance of sampling a convex direction.
The results in the table are the mean over all the shape pairs (218) in the SHREC07 [91] shape matching
benchmark with n = 100. The empirical test was conducted using 106 random directions sampled from an
i.i.d. Gaussian distribution. Note that 0 in the table means numerical zero (below machine precision).

136

Doctoral Dissertation Haggai Maron August 2019

Table 15: Evaluation of probable conditional concavity for different functions of geodesics on lin(DS).

Distance Distance Squared MultiQuadratic c30 c31 Gaussian

Bound mean 0 0.024 7 · 10�4 0 0 0
Bound std 0 0.021 1.7 · 10�3 0 0 0
Empirical mean 0 0.003 7 · 10�5 0 0 0
Empirical std 0 0.003 1.8 · 10�4 0 0 0

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

BIM

Geodesic
C_30

Gaussian
Heat kernel

C_31
1-sided

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

Trajectory
Humerus Bone
Tibia Bone

(a) (b)

Figure 58: (a) SHREC07 benchmark: Cumulative distribution functions of all errors (left) and mean error per shape
(right). (b) Anatomical dataset embedding in the plane. Squares and triangles represent different bone types, lines
represent temporal trajectories.

Initialization: Motivated by [78, 126] and due to the fast running time of the algorithms (e.g., 150msec
for n = 200 with Algorithm 2, and 16sec with Algorithm 3, both on a single CPU) we sampled multiple
initializations based on randomized l-pairs of vertices of graphs GA, GB and choose the result corresponding
to the best energy. In Algorithm 2 we used the Auction algorithm [28], as in [238].

Table 16: Comparison to ”convex to concave” methods. The table shows the average and the std of the energy
differences. Positive averages indicate our algorithm achieves lower energy on average.

ModelNet10 SHREC07

points 30 60 90 30 60 90

DSPP 5.0± 5.3 9.8± 10.8 14.468± 19.8 1.3± 2.3 9.5± 9.5 26.2± 24.3
PATH 101.4±53.9 512.3±198.4 1251.9±426.4 69.263±55.9 307.7±230.6 721.0±549.7

RANDOM 197.9±35.2 865.3±122.1 1986.1±273.0 120.2±83.6 532.7±357.8 1230.7±817.6

Comparison with convex-to-concave methods: Table 16 compares our method to [265, 72] (PATH,
DSPP accordingly). As mentioned in the introduction, these methods solve convex relaxations and then
project its minimizer while deforming the energy towards concavity. Our method compares favorably in the
task of matching point-clouds from the ModelNet10 dataset [252] with Euclidean distances as affinities, and
the SHREC07 dataset [91] with geodesic distances. We used F = ⇧n, and energy (91). The table shows
average and standard deviation of energy differences of the listed algorithms and ours; the average is taken
over 50 random pairs of shapes. Note that positive averages mean our algorithm achieves lower energy on
average; the difference to random energy values is given for scale.
Automatic shape matching: We use our Algorithm 2 for automatic shape matching (i.e., with no user input
or input shape features) on a the SHREC07 [91] dataset according to the protocol of [126]. This benchmark
consists of matching 218 pairs of (often extremely) non-isometric shapes in 11 different classes such as
humans, animals, planes, ants etc. On each shape, we sampled k = 8 points using farthest point sampling
and randomized s = 2000 initializations of subsets of l = 3 points. In this stage, we use n = 300 points.

137

Doctoral Dissertation Haggai Maron August 2019

We then up-sampled to n = 1500 using the exact algorithm with initialization using our n = 300 best re-
sult. The process takes about 16min per pair running on a single CPU. Figure 58 (a) shows the cumulative
distribution function of the geodesic matching errors (left - all errors, right - mean error per pair) of Algo-
rithm 2 with geodesic distances and their functions c30, c31. We used (91) and F = ⇧. We also show the
result of Algorithm 3 with geodesic distances, see details in the supplementary materials. We compare with
Blended Intrinsic Maps (BIM) [126] and the energies suggested by [33] (heat kernel) and [238] (Gaussian of
geodesics). For the latter two, we used the same procedure as described above and just replaced the energies
with the ones suggested in these works. Note that the Gaussian of geodesics energy of [238] falls into the
probably concave framework.

Anatomical shape space analysis: We match a dataset of 67 mice bone surfaces acquired using micro-CT.
The dataset consists of eight time series. Each time series captures the development of one type of bone over
time. We use Algorithm 2 to match all pairs in the dataset
using Euclidean distance affinity matrices A,B, energy (91), and F = ⇧n.
After optimization, we calculated a 67⇥67 dissimilarity matrix. Dissimilarities
are equivalent to our energy over the permutations (up to additive constant) and
defined by

P
ijkl

XijXkl(dik�djl)2. A color-coded matching example can be
seen in the inset. In Figure 58 (b) we used Multi-Dimensional Scaling (MDS)
[137] to assign a 2D coordinate to each surface using the dissimilarity matrix.
Each bone is shown as a trajectory. Note how the embedding separated the
two types of bones and all bones of the same type are mapped to similar time
trajectories. This kind of visualization can help biologists analyze their data
and possibly find interesting time periods in which bone growth is changing.
Lastly, note that the Tibia bones (on the right) exhibit an interesting change in the midst of its growth. This
particular time was also predicted by other means by the biologists.

12.6 Conclusion

In this work, we analyze and generalize the idea of concave relaxations for graph matching problems. We
concentrate on conditionally concave and probably conditionally concave energies and demonstrate that
they provide useful relaxations in practice. We prove that all local minima of such relaxations are with
high probability in the original feasible set; this allows removing the standard post-process projection step
in relaxation-based algorithms. Another conclusion is that the set of optimal solutions of such relaxations
coincides with the set of optimal solutions of the original graph matching problem.
There are popular edge affinity matrices, such as {0, 1} adjacency matrices, that in general do not lead to
conditionally concave relaxations. This raises the general question of characterizing more general classes of
affinity matrices that furnish (probably) conditionally-concave relaxations. Another interesting future work
could try to obtain information on the quality of local minima for more specific classes of graphs.

12.7 Frank-Wolfe with concave search

An orthogonal basis to lin(F) is computed similarly to Lemma 12:

Lemma 13 (orthonormal basis for one-sided permutations). If the columns of F 2 Rn0⇥(n0�1) form an
orthonormal basis for 1? in Rn0 then the columns of F ⌦ In are an orthonormal basis for lin(F).

The energy E2(X) in this case does not model the matching problem well since it gives rise to trivial

138

Doctoral Dissertation Haggai Maron August 2019

solutions. Instead, we chose to optimize the similar energy [226]: E(X) =
P

ijkl
XijXkl(Aik � Bjl)2.

This energy can also be written in matrix form: [X]TM [X] where M = �2B ⌦ A + 11T ⌦ A.2 + B.2 ⌦
11T (where C.2 implies entry-wise operation) and after restricting it to lin(F) its Hessian is of the form
�2FBF ⌦ A + FB.2F ⌦ 11T . Assuming A,B are Euclidean distance matrices, the right summand is
negative semidefinite, but the left summand is not. This is because that A is not conjugated by F : it has a
large positive eigenvalue as a result of the Perron-Frobenius Theorem.
The linear program solved in each iteration of the algorithm takes a surprisingly simple form: it amounts to
solving minX2hull(F) tr(rE(X0)TX) which can be solved simply by assigning the value 1 to the index of
the minimal value in each row of rE(X0). This procedure always outputs solutions in F .
The convex energies we subtract from the objective during the concave search should be constant on F so
a reduction in the subtracted energy is the same as in the original energy E(X). We use the quadratic form
defined by � ⇤ ⇤ where ⇤ is a nn0 ⇥ nn0 diagonal matrix defined by Dijij = maxj {

P
kl
|Mijkl|}. D is a

positive definite matrix and for � = 1 , W �D is guaranteed to be negative semidefinite. The values of �
need not be discretized since there are only n different critical values - the ones that change the minimum
calculation mentioned in the previous paragraph.

139

Doctoral Dissertation Haggai Maron August 2019

13 Discussion

Although considerable progress was obtained in the last few years, both problems considered in this thesis
are far from being solved. As for the problem of deep learning on irregular data, there are currently no
methods that can work on all types of meshes, including triangle soups which are abundant in applications.
A possible way to tackle this problem is using the hyper-graph learning approach from [158] as was recently
suggested by [8]. As for matching problems, there is still no silver bullet solution for matching three-
dimensional shapes. One prominent direction is to learn how to efficiently solve these hard optimization
problems, as was suggested in e.g.[162, 245, 147]. Another interesting venue for future work is trying to
leverage the recently discovered connection between the Sherali-Adams relaxations of matching problems
[12], WL isomorphism tests and the k-order invariant neural networks suggested in [161].

140

Doctoral Dissertation Haggai Maron August 2019

Publication list (first author)

[14] Matan Atzmon, Haggai Maron, and Yaron Lipman. “Point Convolutional Neural Networks by Ex-
tension Operators”. In: ACM Trans. Graph. 37.4 (July 2018), 71:1–71:12. ISSN: 0730-0301.

[72] Nadav Dym, Haggai Maron, and Yaron Lipman. “DS++: a flexible, scalable and provably tight
relaxation for matching problems”. In: ACM Transactions on Graphics (TOG) 36.6 (2017), p. 184.

[156] Haggai Maron and Yaron Lipman. “(Probably) Concave Graph Matching”. In: Advances in Neural
Information Processing Systems. 2018, pp. 406–416.

[157] Haggai Maron et al. “Convolutional neural networks on surfaces via seamless toric covers”. In: ACM
Trans. Graph 36.4 (2017), p. 71.

[158] Haggai Maron et al. “Invariant and Equivariant Graph Networks”. In: International Conference on
Learning Representations. 2019. URL: https://openreview.net/forum?id=Syx72jC9tm.

[159] Haggai Maron et al. “On the Universality of Invariant Networks”. In: International conference on
machine learning. 2019.

[160] Haggai Maron et al. “Point Registration via Efficient Convex Relaxation”. In: ACM Trans. Graph.
35.4 (July 2016), 73:1–73:12. ISSN: 0730-0301.

[161] Haggai Maron et al. “Provably Powerful Graph Networks”. In: Advances in Neural Information
Processing Systems (Dec. 2019).

Additional papers (secondary author)

[15] Matan Atzmon et al. “Controlling Neural Level Sets”. In: arXiv preprint arXiv:1905.11911 (2019).

[23] Heli Ben-Hamu et al. “Multi-chart Generative Surface Modeling”. In: ACM Trans. Graph. 37.6
(Dec. 2018), 215:1–215:15. ISSN: 0730-0301.

[101] Niv Haim et al. “Surface Networks via General Covers”. In: International Conference on Computer
Vision (Oct. 2019).

[138] Yam Kushinsky et al. “Sinkhorn Algorithm for Lifted Assignment Problems”. In: SIAM Journal on
Imaging Sciences 12.2 (2019), pp. 716–735.

141

Doctoral Dissertation Haggai Maron August 2019

References

[1] Martin Abadi et al. “Tensorflow: a system for large-scale machine learning.” In: OSDI. Vol. 16.
2016, pp. 265–283.

[2] WARREN P Adams and Terri A Johnson. “Improved linear programming-based lower bounds for
the quadratic assignment problem”. In: DIMACS series in discrete mathematics and theoretical com-
puter science 16 (1994), pp. 43–75.

[3] Adobe Fuse 3D Characters. https://www.mixamo.com. Accessed: 2016-10-15. 2016.

[4] Yonathan Aflalo, Alex Bronstein, and Ron Kimmel. “Graph matching: relax or not?” In: arXiv
preprint arXiv:1401.7623 (2014).

[5] Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. “On convex relaxation of graph isomor-
phism”. In: Proceedings of the National Academy of Sciences 112.10 (Mar. 2015), pp. 2942–2947.
ISSN: 1091-6490. DOI: 10.1073/pnas.1401651112. URL: http://dx.doi.org/10.
1073/pnas.1401651112.

[6] Noam Aigerman and Yaron Lipman. “Hyperbolic orbifold tutte embeddings”. In: ACM Transactions
on Graphics (TOG) 35.6 (2016), p. 217.

[7] Noam Aigerman and Yaron Lipman. “Orbifold Tutte embeddings.” In: ACM Trans. Graph. 34.6
(2015), pp. 190–1.

[8] Marjan Albooyeh, Daniele Bertolini, and Siamak Ravanbakhsh. “Incidence Networks for Geometric
Deep Learning”. In: arXiv preprint arXiv:1905.11460 (2019).

[9] HA Almohamad and Salih O Duffuaa. “A linear programming approach for the weighted graph
matching problem”. In: IEEE Transactions on pattern analysis and machine intelligence 15.5 (1993),
pp. 522–525.

[10] Dragomir Anguelov et al. “SCAPE: shape completion and animation of people”. In: ACM Transac-
tions on Graphics (TOG). Vol. 24. 3. ACM. 2005, pp. 408–416.

[11] Kurt M Anstreicher and Nathan W Brixius. “A new bound for the quadratic assignment problem
based on convex quadratic programming”. In: Mathematical Programming 89.3 (2001), pp. 341–
357.

[12] Albert Atserias and Elitza N Maneva. “Graph Isomorphism, Sherali-Adams Relaxations and Ex-
pressibility in Counting Logics.” In: Electronic Colloquium on Computational Complexity (ECCC).
Vol. 18. 2011, p. 77.

[13] James Atwood and Don Towsley. “Diffusion-convolutional neural networks”. In: Advances in Neu-
ral Information Processing Systems. 2016, pp. 1993–2001.

[16] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. “The wave kernel signature: A quantum
mechanical approach to shape analysis”. In: Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on. IEEE. 2011, pp. 1626–1633.

[17] L Babai. Automorphism groups, isomorphism, reconstruction. Chapter 27 of the Handbook of Com-
binatorics, 1447–1540. RL Graham, M. Grötschel, L. Lovász Eds. 1995.

[18] László Babai. “Graph isomorphism in quasipolynomial time”. In: Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing. ACM. 2016, pp. 684–697.

142

Doctoral Dissertation Haggai Maron August 2019

[19] László Babai, D. Yu. Grigoryev, and David M. Mount. “Isomorphism of Graphs with Bounded
Eigenvalue Multiplicity”. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of
Computing. STOC ’82. San Francisco, California, USA: ACM, 1982, pp. 310–324. ISBN: 0-89791-
070-2. DOI: 10.1145/800070.802206. URL: http://doi.acm.org/10.1145/
800070.802206.

[20] Mikhail Belkin and Partha Niyogi. “Laplacian eigenmaps for dimensionality reduction and data
representation”. In: Neural computation 15.6 (2003), pp. 1373–1396.

[21] Mikhail Belkin and Partha Niyogi. “Towards a theoretical foundation for Laplacian-based manifold
methods.” In: COLT. Vol. 3559. Springer. 2005, pp. 486–500.

[22] Jean-David Benamou et al. “Iterative Bregman projections for regularized transportation problems”.
In: SIAM Journal on Scientific Computing 37.2 (2015), A1111–A1138.

[24] Jon Louis Bentley. “Multidimensional binary search trees used for associative searching”. In: Com-
munications of the ACM 18.9 (1975), pp. 509–517.

[25] Alexander C Berg, Tamara L Berg, and Jitendra Malik. “Shape matching and object recognition
using low distortion correspondences”. In: Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on. Vol. 1. IEEE. 2005, pp. 26–33.

[26] Matthew Berger et al. “A survey of surface reconstruction from point clouds”. In: Computer Graph-
ics Forum. Vol. 36. 1. Wiley Online Library. 2017, pp. 301–329.

[27] Florian Bernard, Christian Theobalt, and Michael Moeller. “Tighter Lifting-Free Convex Relax-
ations for Quadratic Matching Problems”. In: arXiv preprint arXiv:1711.10733 (2017).

[28] Florian Bernard et al. “Fast correspondences for statistical shape models of brain structures.” In:
Medical Imaging: Image Processing. 2016, 97840R.

[29] P.J. Besl and N.D. McKay. “A Method for Registration of 3-D Shapes”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 14.2 (1992), pp. 239–256. ISSN: 0162-8828. DOI:
http://doi.ieeecomputersociety.org/10.1109/34.121791.

[30] Federica Bogo et al. “FAUST: Dataset and evaluation for 3D mesh registration”. In: Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE. 2014, pp. 3794–3801.

[31] E Bogomolny, O Bohigas, and C Schmit. “Distance matrices and isometric embeddings”. In: arXiv
preprint arXiv:0710.2063 (2007).

[32] Davide Boscaini et al. “Learning shape correspondence with anisotropic convolutional neural net-
works”. In: NIPS. 2016.

[33] Amit Boyarski et al. “Efficient Deformable Shape Correspondence via Kernel Matching”. In: arXiv
preprint arXiv:1707.08991 (2017).

[34] Doug M Boyer et al. “Algorithms to automatically quantify the geometric similarity of anatomical
surfaces”. In: Proceedings of the National Academy of Sciences 108.45 (2011), pp. 18221–18226.

[35] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[36] Emmanuel Briand. “When is the algebra of multisymmetric polynomials generated by the ele-
mentary multisymmetric polynomials”. In: Contributions to Algebra and Geometry 45.2 (2004),
pp. 353–368.

[37] Andrew Brock et al. “Generative and discriminative voxel modeling with convolutional neural net-
works”. In: arXiv preprint arXiv:1608.04236 (2016).

143

Doctoral Dissertation Haggai Maron August 2019

[38] Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. “Generalized multidimensional
scaling: A framework for isometry-invariant partial surface matching”. In: Proceedings of the Na-
tional Academy of Sciences of the United States of America 103.5 (2006), pp. 1168–1172. DOI: 10.
1073/pnas.0508601103. eprint: http://www.pnas.org/content/103/5/1168.
full.pdf+html. URL: http://www.pnas.org/content/103/5/1168.abstract.

[39] Michael M Bronstein et al. “Geometric deep learning: going beyond euclidean data”. In: IEEE
Signal Processing Magazine 34.4 (2017), pp. 18–42.

[40] David S Broomhead and David Lowe. Radial basis functions, multi-variable functional interpola-
tion and adaptive networks. Tech. rep. Royal Signals and Radar Establishment Malvern (United
Kingdom), 1988.

[41] Benedict J Brown and Szymon Rusinkiewicz. “Global non-rigid alignment of 3-D scans”. In: ACM
Transactions on Graphics (TOG) 26.3 (2007), p. 21.

[42] Joan Bruna et al. “Spectral Networks and Locally Connected Networks on Graphs”. In: (2013),
pp. 1–14. arXiv: 1312.6203. URL: http://arxiv.org/abs/1312.6203.

[43] Joan Bruna et al. “Spectral networks and locally connected networks on graphs”. In: arXiv preprint
arXiv:1312.6203 (2013).

[44] Yu D Burago and Viktor A Zalgaller. Geometry III: theory of surfaces. Vol. 48. Springer Science &
Business Media, 2013.

[45] Rainer Ernst Burkard et al. “The quadratic assignment problem”. In: Handbook of Combinatorial
Optimization. Kluwer Academic Publishers, 1998.

[46] Jin-Yi Cai, Martin Fürer, and Neil Immerman. “An optimal lower bound on the number of variables
for graph identification”. In: Combinatorica 12.4 (1992), pp. 389–410.

[47] Jonathan C Carr et al. “Reconstruction and representation of 3D objects with radial basis functions”.
In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques.
ACM. 2001, pp. 67–76.

[48] Emilio Carrizosa, Vanesa Guerrero, and Dolores Romero Morales. “Visualizing proportions and
dissimilarities by Space-filling maps: a Large Neighborhood Search approach”. In: Computers &
Operations Research (2016).

[49] Ken Chatfield et al. “Return of the devil in the details: Delving deep into convolutional nets”. In:
arXiv preprint arXiv:1405.3531 (2014).

[50] Qifeng Chen and Vladlen Koltun. “Robust Nonrigid Registration by Convex Optimization”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2015, pp. 2039–2047.

[51] Özgün Çiçek et al. “3D U-Net: learning dense volumetric segmentation from sparse annotation”.
In: International Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer. 2016, pp. 424–432.

[52] Taco S. Cohen and Max Welling. “Steerable CNNs”. In: 1990 (2016), pp. 1–14. arXiv: 1612.
08498. URL: http://arxiv.org/abs/1612.08498.

[53] Taco S Cohen et al. “Spherical CNNs”. In: arXiv preprint arXiv:1801.10130 (2018).

[54] Taco Cohen and Max Welling. “Group equivariant convolutional networks”. In: International con-
ference on machine learning. 2016, pp. 2990–2999.

[55] Ronald R Coifman and Stéphane Lafon. “Diffusion maps”. In: Applied and computational harmonic
analysis 21.1 (2006), pp. 5–30.

144

Doctoral Dissertation Haggai Maron August 2019

[56] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. “Balanced graph matching”. In: Advances in
Neural Information Processing Systems. 2007, pp. 313–320.

[57] Trevor F Cox and Michael AA Cox. Multidimensional scaling. Chapman and hall/CRC, 2000.

[58] Marco Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport”. In: Advances in
Neural Information Processing Systems. 2013, pp. 2292–2300.

[59] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Mathematics of
control, signals and systems 2.4 (1989), pp. 303–314.

[60] Jifeng Dai et al. “Deformable Convolutional Networks”. In: arXiv preprint arXiv:1703.06211 (2017).

[61] E Brian Davies. Linear operators and their spectra. Vol. 106. Cambridge University Press, 2007.

[62] Edilson De Aguiar et al. “Performance capture from sparse multi-view video”. In: ACM Transactions
on Graphics (TOG). Vol. 27. 3. ACM. 2008, p. 98.

[63] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional neural networks
on graphs with fast localized spectral filtering”. In: Advances in Neural Information Processing
Systems. 2016, pp. 3837–3845.

[64] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional neural networks
on graphs with fast localized spectral filtering”. In: Advances in Neural Information Processing
Systems. 2016, pp. 3844–3852.

[65] Yichuan Ding and Henry Wolkowicz. “A low-dimensional semidefinite relaxation for the quadratic
assignment problem”. In: Mathematics of Operations Research 34.4 (2009), pp. 1008–1022.

[66] John D Dixon and Brian Mortimer. Permutation groups. Vol. 163. Springer Science & Business
Media, 1996.

[67] Manfredo P Do Carmo et al. “Differential Geometry”. In: Mathematical Models. Springer, 2017,
pp. 155–180.

[68] Brendan L Douglas. “The Weisfeiler-Lehman method and graph isomorphism testing”. In: arXiv
preprint arXiv:1101.5211 (2011).

[69] David K Duvenaud et al. “Convolutional networks on graphs for learning molecular fingerprints”.
In: Advances in neural information processing systems. 2015, pp. 2224–2232.

[70] Nadav Dym and Yaron Lipman. “Exact Recovery with Symmetries for Procrustes Matching”. In:
arXiv preprint arXiv:1606.01548 (2016).

[73] Yuval Eldar et al. “The farthest point strategy for progressive image sampling”. In: Image Process-
ing, IEEE Transactions on 6.9 (1997), pp. 1305–1315.

[74] Wei Feng et al. “Feature correspondences using morse smale complex”. In: The Visual Computer
29.1 (2013), pp. 53–67.

[75] Matthias Fey and Jan Eric Lenssen. “Fast Graph Representation Learning with PyTorch Geometric”.
In: arXiv preprint arXiv:1903.02428 (2019).

[76] Marcelo Fiori and Guillermo Sapiro. “On spectral properties for graph matching and graph isomor-
phism problems”. In: Information and Inference: A Journal of the IMA 4.1 (2015), pp. 63–76.

[77] Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography”. In: Communications of the ACM
24.6 (1981), pp. 381–395.

145

Doctoral Dissertation Haggai Maron August 2019

[78] Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography”. In: Readings in computer vision.
Elsevier, 1987, pp. 726–740.

[79] Fajwel Fogel et al. “Convex relaxations for permutation problems”. In: Advances in Neural Infor-
mation Processing Systems. 2013, pp. 1016–1024.

[80] F. Fogel et al. “Convex Relaxations for Permutation Problems”. In: SIAM Journal on Matrix Analysis
and Applications 36.4 (2015), pp. 1465–1488. DOI: 10.1137/130947362.

[81] Marguerite Frank and Philip Wolfe. “An algorithm for quadratic programming”. In: Naval Research
Logistics (NRL) 3.1-2 (1956), pp. 95–110.

[82] Ohad Fried et al. “IsoMatch: Creating informative grid layouts”. In: Computer graphics forum.
Vol. 34. 2. Wiley Online Library. 2015, pp. 155–166.

[83] Mituhiro Fukuda et al. “Exploiting Sparsity in Semidefinite Programming via Matrix Completion
I: General Framework”. In: SIAM J. on Optimization 11.3 (Mar. 2000), pp. 647–674. ISSN: 1052-
6234. DOI: 10.1137/S1052623400366218. URL: http://dx.doi.org/10.1137/
S1052623400366218.

[84] William Fulton and Joe Harris. Representation theory: a first course. Vol. 129. Springer Science &
Business Media, 2013.

[85] Thomas Funkhouser and Michael Kazhdan. “Shape-based retrieval and analysis of 3D models”. In:
ACM SIGGRAPH 2004 Course Notes. ACM. 2004, p. 16.

[86] Thomas Funkhouser and Philip Shilane. “Partial matching of 3 D shapes with priority-driven search”.
In: ACM International Conference Proceeding Series. Vol. 256. 2006, pp. 131–142.

[87] Andrew H Gee and Richard W Prager. “Polyhedral combinatorics and neural networks”. In: Neural
computation 6.1 (1994), pp. 161–180.

[88] Natasha Gelfand et al. “Robust Global Registration”. In: Proceedings of the Third Eurographics
Symposium on Geometry Processing. SGP ’05. Vienna, Austria: Eurographics Association, 2005.
ISBN: 3-905673-24-X. URL: http://dl.acm.org/citation.cfm?id=1281920.
1281953.

[89] Justin Gilmer et al. “Neural Message Passing for Quantum Chemistry”. In: International Conference
on Machine Learning. 2017, pp. 1263–1272.

[90] Justin Gilmer et al. “Neural message passing for quantum chemistry”. In: arXiv preprint arXiv:1704.01212
(2017).

[91] Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. “Shape retrieval contest 2007: Watertight
models track”. In: SHREC competition 8.7 (2007).

[92] Manfred Göbel. “Computing bases for rings of permutation-invariant polynomials”. In: J. Symb.
Comput. 19.4 (1995), pp. 285–291.

[93] Marco Gori, Gabriele Monfardini, and Franco Scarselli. “A new model for earning in raph do-
mains”. In: Proceedings of the International Joint Conference on Neural Networks 2.January (2005),
pp. 729–734. DOI: 10.1109/IJCNN.2005.1555942.

[94] John C Gower and Garmt B Dijksterhuis. Procrustes problems. Vol. 3. Oxford University Press
Oxford, 2004.

[95] Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory. Vol. 47.
Cambridge University Press, 2017.

146

Doctoral Dissertation Haggai Maron August 2019

[96] Martin Grohe and Martin Otto. “Pebble games and linear equations”. In: The Journal of Symbolic
Logic 80.3 (2015), pp. 797–844.

[97] Robert Grone et al. “Positive definite completions of partial Hermitian matrices”. In: Linear algebra
and its applications 58 (1984), pp. 109–124.

[98] Paul Guerrero et al. “PCPNET: Learning Local Shape Properties from Raw Point Clouds”. In: arXiv
preprint arXiv:1710.04954 (2017).

[99] Kan Guo, Dongqing Zou, and Xiaowu Chen. “3D Mesh Labeling via Deep Convolutional Neural
Networks”. In: ACM Trans. Graph. 35.1 (2015).

[100] Yanrong Guo et al. “Robust anatomical correspondence detection by hierarchical sparse graph match-
ing”. In: IEEE transactions on medical imaging 32.2 (2013), pp. 268–277.

[102] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs”.
In: Advances in Neural Information Processing Systems. 2017, pp. 1024–1034.

[103] William L Hamilton, Rex Ying, and Jure Leskovec. “Representation learning on graphs: Methods
and applications”. In: arXiv preprint arXiv:1709.05584 (2017).

[104] Jason S. Hartford et al. “Deep Models of Interactions Across Sets”. In: ICML. 2018.

[105] Jason Hartford et al. “Deep Models of Interactions Across Sets”. In: arXiv preprint arXiv:1803.02879
(2018).

[106] Vishakh Hegde and Reza Zadeh. “Fusionnet: 3d object classification using multiple data represen-
tations”. In: arXiv preprint arXiv:1607.05695 (2016).

[107] Christoph Helmberg. “Semidefinite programming for combinatorial optimization”. In: (2000).

[108] Mikael Henaff, Joan Bruna, and Yann LeCun. “Deep Convolutional Networks on Graph-Structured
Data”. In: June (2015). ISSN: 1506.05163. arXiv: 1506.05163. URL: http://arxiv.org/
abs/1506.05163.

[109] Mikael Henaff, Joan Bruna, and Yann LeCun. “Deep convolutional networks on graph-structured
data”. In: arXiv preprint arXiv:1506.05163 (2015).

[110] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural networks
4.2 (1991), pp. 251–257.

[111] Gary B Huang et al. Labeled faces in the wild: A database for studying face recognition in uncon-
strained environments. Tech. rep. Technical Report 07-49, University of Massachusetts, Amherst,
2007.

[112] Qixing Huang, Fan Wang, and Leonidas Guibas. “Functional Map Networks for Analyzing and
Exploring Large Shape Collections”. In: ACM Trans. Graph. 33.4 (July 2014), 36:1–36:11. ISSN:
0730-0301. DOI: 10.1145/2601097.2601111. URL: http://doi.acm.org/10.1145/
2601097.2601111.

[113] Benoit Huet, Andrew DJ Cross, and Edwin R Hancock. “Graph matching for shape retrieval”. In:
Advances in Neural Information Processing Systems. 1999, pp. 896–902.

[114] Jean-Pierre Imhof. “Computing the distribution of quadratic forms in normal variables”. In: Biometrika
48.3/4 (1961), pp. 419–426.

[115] Sergey Ivanov and Evgeny Burnaev. “Anonymous Walk Embeddings”. In: arXiv preprint arXiv:1805.11921
(2018).

147

Doctoral Dissertation Haggai Maron August 2019

[116] Varun Jain, Hao Zhang, and Oliver Van Kaick. “Non-Rigid Spectral Correspondence of Triangle
Meshes”. In: International Journal of Shape Modeling 13 (2007), pp. 101–124. ISSN: 0218-6543.
DOI: 10.1142/S0218654307000968.

[117] Tao Ju. “Robust repair of polygonal models”. In: ACM Transactions on Graphics (TOG) 23.3 (2004),
pp. 888–895.

[118] Felix Kälberer, Matthias Nieser, and Konrad Polthier. “QuadCover-Surface Parameterization us-
ing Branched Coverings”. In: Computer Graphics Forum. Vol. 26. 3. Wiley Online Library. 2007,
pp. 375–384.

[119] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. “Learning 3D mesh segmentation and
labeling”. In: ACM Transactions on Graphics (TOG) 29.4 (2010), p. 102.

[120] Evangelos Kalogerakis et al. “3D Shape Segmentation with Projective Convolutional Networks”. In:
arXiv preprint arXiv:1612.02808 (2016).

[121] Tero Karras et al. “Progressive growing of gans for improved quality, stability, and variation”. In:
arXiv preprint arXiv:1710.10196 (2017).

[122] David G Kendall. “Shape manifolds, Procrustean metrics, and complex projective spaces”. In: Bul-
letin of the London Mathematical Society 16.2 (1984), pp. 81–121.

[123] Nicolas Keriven and Gabriel Peyré. “Universal Invariant and Equivariant Graph Neural Networks”.
In: CoRR abs/1905.04943 (2019). arXiv: 1905.04943. URL: http://arxiv.org/abs/
1905.04943.

[124] Itay Kezurer et al. “Tight Relaxation of Quadratic Matching”. In: Comput. Graph. Forum 34.5 (Aug.
2015), pp. 115–128. ISSN: 0167-7055. DOI: 10.1111/cgf.12701. URL: http://dx.doi.
org/10.1111/cgf.12701.

[125] Itay Kezurer et al. “Tight relaxation of quadratic matching”. In: Computer Graphics Forum. Vol. 34.
5. Wiley Online Library. 2015, pp. 115–128.

[126] Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser. “Blended intrinsic maps”. In: ACM
Transactions on Graphics (TOG). Vol. 30. 4. ACM. 2011, p. 79.

[127] Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser. “Blended intrinsic maps”. In: ACM
Transactions on Graphics 30.4 (2011), p. 1. ISSN: 07300301. DOI: 10.1145/2010324.1964974.

[128] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional net-
works”. In: arXiv preprint arXiv:1609.02907 (2016).

[129] Roman Klokov and Victor Lempitsky. “Escape from Cells: Deep Kd-Networks for The Recognition
of 3D Point Cloud Models”. In: arXiv preprint arXiv:1704.01222 (2017).

[130] Vladimir Kolmogorov. “Convergent tree-reweighted message passing for energy minimization”. In:
IEEE transactions on pattern analysis and machine intelligence 28.10 (2006), pp. 1568–1583.

[131] Risi Kondor and Shubhendu Trivedi. “On the generalization of equivariance and convolution in
neural networks to the action of compact groups”. In: arXiv preprint arXiv:1802.03690 (2018).

[132] Risi Kondor et al. “Covariant compositional networks for learning graphs”. In: arXiv preprint arXiv:1801.02144
(2018).

[133] JJ Kosowsky and Alan L Yuille. “The invisible hand algorithm: Solving the assignment problem
with statistical physics”. In: Neural networks 7.3 (1994), pp. 477–490.

[134] Hanspeter Kraft and Claudio Procesi. “Classical invariant theory, a primer”. In: Lecture Notes, Ver-
sion (2000).

148

Doctoral Dissertation Haggai Maron August 2019

[135] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A Survey on Graph Kernels. 2019.
arXiv: 1903.11835 [cs.LG].

[136] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep convo-
lutional neural networks”. In: Advances in neural information processing systems. 2012, pp. 1097–
1105.

[137] Joseph B Kruskal and Myron Wish. Multidimensional scaling. Vol. 11. Sage, 1978.

[139] Dmitry Laptev et al. “TI-POOLING: transformation-invariant pooling for feature learning in Convo-
lutional Neural Networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 289–297.

[140] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553 (2015),
p. 436.

[141] Yann LeCun et al. “Backpropagation applied to handwritten zip code recognition”. In: Neural com-
putation 1.4 (1989), pp. 541–551.

[142] Tao Lei et al. “Deriving neural architectures from sequence and graph kernels”. In: Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 2024–
2033.

[143] Marius Leordeanu and Martial Hebert. “A spectral technique for correspondence problems using
pairwise constraints”. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Vol-
ume 1. Vol. 2. IEEE. 2005, pp. 1482–1489.

[144] Ron Levie et al. “CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spec-
tral Filters”. In: (2017), pp. 1–12. ISSN: 1063-6919. DOI: 10.1109/CVPR.2017.576. arXiv:
1705.07664. URL: http://arxiv.org/abs/1705.07664.

[145] Hao Li, Robert W Sumner, and Mark Pauly. “Global Correspondence Optimization for Non-Rigid
Registration of Depth Scans”. In: Computer Graphics Forum. Vol. 27. 5. Wiley Online Library.
2008, pp. 1421–1430.

[146] Yujia Li et al. “Gated Graph Sequence Neural Networks”. In: 1 (2015), pp. 1–20. ISSN: 10797114.
DOI: 10.1103/PhysRevLett.116.082003. arXiv: 1511.05493. URL: http://arxiv.
org/abs/1511.05493.

[147] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. “Combinatorial optimization with graph convolu-
tional networks and guided tree search”. In: Advances in Neural Information Processing Systems.
2018, pp. 537–546.

[148] Yaron Lipman and Thomas Funkhouser. “Möbius voting for surface correspondence”. In: ACM
Transactions on Graphics (TOG). Vol. 28. 3. ACM. 2009, p. 72.

[149] Jingen Liu, Jiebo Luo, and Mubarak Shah. “Recognizing realistic actions from videos “in the wild””.
In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE. 2009,
pp. 1996–2003.

[150] Eliane Maria Loiola et al. “A survey for the quadratic assignment problem”. In: European journal
of operational research 176.2 (2007), pp. 657–690.

[151] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for semantic
segmentation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2015, pp. 3431–3440.

[152] Zhi-Quan Luo et al. “Semidefinite relaxation of quadratic optimization problems”. In: Signal Pro-
cessing Magazine, IEEE 27.3 (2010), pp. 20–34.

149

Doctoral Dissertation Haggai Maron August 2019

[153] Vince Lyzinski et al. “Graph Matching: Relax at Your Own Risk”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2016). ISSN: 01628828. DOI: 10.1109/TPAMI.2015.
2424894. arXiv: 1405.3133.

[154] Vince Lyzinski et al. “Graph Matching: Relax at Your Own Risk.” In: IEEE Trans. Pattern Anal.
Mach. Intell. 38.1 (2016), pp. 60–73. URL: http://dblp.uni-trier.de/db/journals/
pami/pami38.html#LyzinskiFFVPS16.

[155] Wolfgang Maier. “Tooth morphology and dietary specialization”. In: Food acquisition and process-
ing in primates. Springer, 1984, pp. 303–330.

[162] Jonathan Masci et al. “Geodesic convolutional neural networks on riemannian manifolds”. In: Pro-
ceedings of the IEEE international conference on computer vision workshops. 2015, pp. 37–45.

[163] Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional neural network for real-time
object recognition”. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Con-
ference on. IEEE. 2015, pp. 922–928.

[164] Tim McInerney and Demetri Terzopoulos. “Deformable models in medical image analysis: a sur-
vey”. In: Medical image analysis 1.2 (1996), pp. 91–108.

[165] Facundo Mémoli. “Gromov–Wasserstein distances and the metric approach to object matching”. In:
Foundations of computational mathematics 11.4 (2011), pp. 417–487.

[166] Facundo Mémoli and Guillermo Sapiro. “A theoretical and computational framework for isome-
try invariant recognition of point cloud data”. In: Foundations of Computational Mathematics 5.3
(2005), pp. 313–347.

[167] Facundo Mémoli and Guillermo Sapiro. “Comparing Point Clouds”. In: Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. SGP ’04. Nice, France: ACM,
2004, pp. 32–40. ISBN: 3-905673-13-4. DOI: 10.1145/1057432.1057436. URL: http:
//doi.acm.org/10.1145/1057432.1057436.

[168] J Milnor. “Topology from a differentiable viewpoint(University of Virginia Press, Charlottesville,
VA)”. In: (1965).

[169] Philipp Mitteroecker and Philipp Gunz. “Advances in geometric morphometrics”. In: Evolutionary
Biology 36.2 (2009), pp. 235–247.

[170] Federico Monti et al. “Dual-Primal Graph Convolutional Networks”. In: (2018), pp. 1–11. arXiv:
1806.00770. URL: http://arxiv.org/abs/1806.00770.

[171] Federico Monti et al. “Geometric deep learning on graphs and manifolds using mixture model
CNNs”. In: arXiv preprint arXiv:1611.08402 (2016).

[172] Federico Monti et al. “Geometric deep learning on graphs and manifolds using mixture model
CNNs”. In: Proc. CVPR. Vol. 1. 2. 2017, p. 3.

[173] Christopher Morris, Kristian Kersting, and Petra Mutzel. “Glocalized Weisfeiler-Lehman graph ker-
nels: Global-local feature maps of graphs”. In: 2017 IEEE International Conference on Data Mining
(ICDM). IEEE. 2017, pp. 327–336.

[174] Christopher Morris and Petra Mutzel. “Towards a practical k -dimensional Weisfeiler-Leman algo-
rithm”. In: arXiv preprint arXiv:1904.01543 (2019).

[175] Christopher Morris et al. “Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks”.
In: arXiv preprint arXiv:1810.02244 (2018).

150

Doctoral Dissertation Haggai Maron August 2019

[176] MOSEK. The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 49). 2015.
URL: http://docs.mosek.com/7.1/toolbox/index.html.

[177] Ryan L Murphy et al. “Relational Pooling for Graph Representations”. In: arXiv preprint arXiv:1903.02541
(2019).

[178] Elizbar A Nadaraya. “On estimating regression”. In: Theory of Probability & Its Applications 9.1
(1964), pp. 141–142.

[179] Marion Neumann et al. “Propagation kernels: efficient graph kernels from propagated information”.
In: Machine Learning 102.2 (2016), pp. 209–245.

[180] Andy Nguyen et al. “An Optimization Approach to Improving Collections of Shape Maps”. In:
Computer Graphics Forum 30.5 (2011), pp. 1481–1491. ISSN: 1467-8659. DOI: 10.1111/j.
1467- 8659.2011.02022.x. URL: http://dx.doi.org/10.1111/j.1467-
8659.2011.02022.x.

[181] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. “Learning Convolutional Neural Net-
works for Graphs”. In: (2016). ISSN: 1938-7228. arXiv: 1605.05273.

[182] Richard G Ogier and DA Beyer. “Neural network solution to the link scheduling problem using con-
vex relaxation”. In: Global Telecommunications Conference, 1990, and Exhibition.’Communications:
Connecting the Future’, GLOBECOM’90., IEEE. IEEE. 1990, pp. 1371–1376.

[183] Mark JL Orr et al. Introduction to radial basis function networks. 1996.

[184] Mark JL Orr. “Recent advances in radial basis function networks”. In: Institute for Adaptative and
Neural Computation (1999).

[185] Maks Ovsjanikov, Jian Sun, and Leonidas Guibas. “Global intrinsic symmetries of shapes”. In:
Computer Graphics Forum. Vol. 27. 5. Wiley Online Library. 2008, pp. 1341–1348.

[186] Maks Ovsjanikov et al. “Functional maps: a flexible representation of maps between shapes”. In:
ACM Transactions on Graphics (TOG) 31.4 (2012), p. 30.

[187] Maks Ovsjanikov et al. “One point isometric matching with the heat kernel”. In: Computer Graphics
Forum. Vol. 29. 5. Wiley Online Library. 2010, pp. 1555–1564.

[188] Jooyoung Park and Irwin W Sandberg. “Universal approximation using radial-basis-function net-
works”. In: Neural computation 3.2 (1991), pp. 246–257.

[189] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. “Deep face recognition”. In: British
Machine Vision Conference. Vol. 1. 3. 2015, p. 6.

[190] Ulrich Pinkall and Konrad Polthier. “Computing discrete minimal surfaces and their conjugates”.
In: Experimental mathematics 2.1 (1993), pp. 15–36.

[191] J. Pokrass et al. “Sparse modeling of intrinsic correspondences”. In: Computer Graphics Forum
32.2 PART4 (2013), pp. 459–468. ISSN: 01677055. DOI: 10.1111/cgf.12066. arXiv: arXiv:
1209.6560v1.

[192] Svatopluk Poljak, Franz Rendl, and Henry Wolkowicz. “A recipe for semidefinite relaxation for (0,
1)-quadratic programming”. In: Journal of Global Optimization 7.1 (1995), pp. 51–73.

[193] Emil Praun and Hugues Hoppe. “Spherical parametrization and remeshing”. In: ACM Transactions
on Graphics (TOG). Vol. 22. 3. ACM. 2003, pp. 340–349.

[194] Charles Ruizhongtai Qi et al. “Volumetric and Multi-View CNNs for Object Classification on 3D
Data”. In: Proc. Computer Vision and Pattern Recognition (CVPR), IEEE. 2016.

151

Doctoral Dissertation Haggai Maron August 2019

[195] Charles R Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
Space”. In: arXiv preprint arXiv:1706.02413 (2017).

[196] Charles R. Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta-
tion”. In: arXiv preprint arXiv:1612.00593 (2016).

[197] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d classification and segmentation”.
In: Proc. Computer Vision and Pattern Recognition (CVPR), IEEE 1.2 (2017), p. 4.

[198] Novi Quadrianto, Le Song, and Alex J Smola. “Kernelized sorting”. In: Advances in neural infor-
mation processing systems. 2009, pp. 1289–1296.

[199] Raghunathan Ramakrishnan et al. “Quantum chemistry structures and properties of 134 kilo molecules”.
In: Scientific data 1 (2014), p. 140022.

[200] Anand Rangarajan, Steven Gold, and Eric Mjolsness. “A novel optimizing network architecture with
applications”. In: Neural Computation 8.5 (1996), pp. 1041–1060.

[201] Anand Rangarajan et al. “A convergence proof for the softassign quadratic assignment algorithm”.
In: Advances in neural information processing systems (1997), pp. 620–626.

[202] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. “Deep learning with sets and point
clouds”. In: arXiv preprint arXiv:1611.04500 (2016).

[203] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. “Equivariance through parameter-sharing”.
In: arXiv preprint arXiv:1702.08389 (2017).

[204] Gernot Riegler, Ali Osman Ulusoys, and Andreas Geiger. “Octnet: Learning deep 3d representations
at high resolutions”. In: arXiv preprint arXiv:1611.05009 (2016).

[205] Emanuele Rodola et al. “A game-theoretic approach to deformable shape matching”. In: Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 182–189.

[206] Emanuele Rodola et al. “Elastic net constraints for shape matching”. In: Computer Vision (ICCV),
2013 IEEE International Conference on. IEEE. 2013, pp. 1169–1176.

[207] Emanuele Rodolà et al. “Dense non-rigid shape correspondence using random forests”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, pp. 4177–4184.

[208] Mark Rudelson, Roman Vershynin, et al. “Hanson-Wright inequality and sub-gaussian concentra-
tion”. In: Electronic Communications in Probability 18 (2013).

[209] Szymon Rusinkiewicz and Marc Levoy. “Efficient variants of the ICP algorithm”. In: Proceedings
Third International Conference on 3-D Digital Imaging and Modeling (2001), pp. 145–152. ISSN:
08876185. DOI: 10.1109/IM.2001.924423. URL: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=924423.

[210] Raif M. Rustamov. “Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Represen-
tation”. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing. SGP ’07.
Barcelona, Spain: Eurographics Association, 2007, pp. 225–233. ISBN: 978-3-905673-46-3. URL:
http://dl.acm.org/citation.cfm?id=1281991.1282022.

[211] David Rydh. “A minimal set of generators for the ring of multisymmetric functions”. In: Annales de
l’institut Fourier. Vol. 57. 6. 2007, pp. 1741–1769.

[212] James Saunderson, Pablo A Parrilo, and Alan S Willsky. “Semidefinite descriptions of the convex
hull of rotation matrices”. In: arXiv preprint arXiv:1403.4914 (2014).

[213] Franco Scarselli et al. “The graph neural network model”. In: Neural Networks, IEEE Transactions
on 20.1 (2009), pp. 61–80. ISSN: 1045-9227. DOI: 10.1109/TNN.2008.2005605.

152

Doctoral Dissertation Haggai Maron August 2019

[214] Christian Schellewald, Stefan Roth, and Christoph Schnörr. “Evaluation of convex optimization
techniques for the weighted graph-matching problem in computer vision”. In: Joint Pattern Recog-
nition Symposium. Springer. 2001, pp. 361–368.

[215] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified embedding for face
recognition and clustering”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 815–823.

[216] Kristof Schütt et al. “MolecuLeNet: A continuous-filter convolutional neural network for modeling
quantum interactions”. In: Advances in Neural Information Processing Systems. 2017, pp. 992–
1002.

[217] Tianjia Shao et al. “Interpreting concept sketches”. In: ACM Transactions on Graphics (TOG) 32.4
(2013), p. 56.

[218] Nino Shervashidze et al. “Efficient graphlet kernels for large graph comparison”. In: Artificial Intel-
ligence and Statistics. 2009, pp. 488–495.

[219] Nino Shervashidze et al. “Weisfeiler-lehman graph kernels”. In: Journal of Machine Learning Re-
search 12.Sep (2011), pp. 2539–2561.

[220] Martin Simonovsky and Nikos Komodakis. “Dynamic Edge-Conditioned Filters in Convolutional
Neural Networks on Graphs”. In: arXiv preprint arXiv:1704.02901 (2017).

[221] Martin Simonovsky and Nikos Komodakis. “Dynamic edge-conditioned filters in convolutional neu-
ral networks on graphs”. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017. 2017. ISBN: 9781538604571. DOI: 10.1109/CVPR.2017.11. arXiv:
1704.02901.

[222] A. Singer and H.-T. Wu. “Vector diffusion maps and the connection Laplacian”. In: Communications
on Pure and Applied Mathematics 65.8 (2012), pp. 1067–1144. ISSN: 1097-0312. DOI: 10.1002/
cpa.21395. URL: http://dx.doi.org/10.1002/cpa.21395.

[223] Ayan Sinha, Jing Bai, and Karthik Ramani. “Deep learning 3D shape surfaces using geometry im-
ages”. In: European Conference on Computer Vision. Springer. 2016, pp. 223–240.

[224] Justin Solomon et al. “Convolutional wasserstein distances: Efficient optimal transportation on geo-
metric domains”. In: ACM Transactions on Graphics (TOG) 34.4 (2015), p. 66.

[225] Justin Solomon et al. “Entropic Metric Alignment for Correspondence Problems”. In: ACM Trans.
Graph. 35.4 (July 2016), 72:1–72:13. ISSN: 0730-0301. DOI: 10.1145/2897824.2925903.
URL: http://doi.acm.org/10.1145/2897824.2925903.

[226] Justin Solomon et al. “Entropic metric alignment for correspondence problems”. In: ACM Transac-
tions on Graphics (TOG) 35.4 (2016), p. 72.

[227] Justin Solomon et al. “Soft maps between surfaces”. In: Computer Graphics Forum. Vol. 31. 5.
Wiley Online Library. 2012, pp. 1617–1626.

[228] Grant Strong and Minglun Gong. “Self-sorting map: An efficient algorithm for presenting multime-
dia data in structured layouts”. In: IEEE Transactions on Multimedia 16.4 (2014), pp. 1045–1058.

[229] Hang Su et al. “Multi-view convolutional neural networks for 3d shape recognition”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2015, pp. 945–953.

[230] Gary KL Tam et al. “Registration of 3D point clouds and meshes: a survey from rigid to nonrigid”.
In: Visualization and Computer Graphics, IEEE Transactions on 19.7 (2013), pp. 1199–1217.

153

Doctoral Dissertation Haggai Maron August 2019

[231] Art Tevs et al. “Isometric registration of ambiguous and partial data”. In: Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE. 2009, pp. 1185–1192.

[232] W. T. Tutte. “How to draw a graph”. In: Proc. London Math. Soc. 13.3 (1963), pp. 743–768.

[233] Shinji Umeyama. “An eigendecomposition approach to weighted graph matching problems”. In:
IEEE transactions on pattern analysis and machine intelligence 10.5 (1988), pp. 695–703.

[234] Oliver Van Kaick et al. “A survey on shape correspondence”. In: Computer Graphics Forum. Vol. 30.
6. Wiley Online Library. 2011, pp. 1681–1707.

[235] Andrea Vedaldi and Karel Lenc. “Matconvnet: Convolutional neural networks for matlab”. In: Pro-
ceedings of the 23rd ACM international conference on Multimedia. ACM. 2015, pp. 689–692.

[236] Petar Veličković et al. “Graph Attention Networks”. In: (2017), pp. 1–12. arXiv: 1710.10903.
URL: http://arxiv.org/abs/1710.10903.

[237] Saurabh Verma and Zhi-Li Zhang. “Hunt For The Unique, Stable, Sparse And Fast Feature Learning
On Graphs”. In: Advances in Neural Information Processing Systems. 2017, pp. 88–98.

[238] Matthias Vestner et al. “Product Manifold Filter: Non-rigid Shape Correspondence via Kernel Den-
sity Estimation in the Product Space”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE. 2017, pp. 6681–6690.

[239] S Vichy N Vishwanathan et al. “Graph kernels”. In: Journal of Machine Learning Research 11.Apr
(2010), pp. 1201–1242.

[240] Daniel Vlasic et al. “Articulated mesh animation from multi-view silhouettes”. In: ACM Transac-
tions on Graphics (TOG). Vol. 27. 3. ACM. 2008, p. 97.

[241] Joshua T Vogelstein et al. “Fast approximate quadratic programming for graph matching”. In: PLOS
one 10.4 (2015), e0121002.

[242] Hayato Waki et al. “Sums of Squares and Semidefinite Programming Relaxations for Polynomial
Optimization Problems with Structured Sparsity”. In: SIAM Journal on Optimization 17 (2006),
pp. 218–242.

[243] Michael Wand et al. Computing Correspondences in Geometric Data Sets Tutorial. http://
resources.mpi-inf.mpg.de/deformableShapeMatching/EG2011_Tutorial/.
Eurographics Association, 2011.

[244] Peng-Shuai Wang et al. “O-cnn: Octree-based convolutional neural networks for 3d shape analysis”.
In: ACM Transactions on Graphics (TOG) 36.4 (2017), p. 72.

[245] Lingyu Wei et al. “Dense Human Body Correspondences Using Convolutional Networks”. In: Com-
puter Vision and Pattern Recognition (CVPR). 2016.

[246] Maurice Weiler et al. “3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumet-
ric Data”. In: (2018). arXiv: 1807.02547. URL: http://arxiv.org/abs/1807.02547.

[247] Eric W Weisstein. “Normal sum distribution”. In: (2000).

[248] Holger Wendland. Scattered data approximation. Vol. 17. Cambridge university press, 2004.

[249] Tomas Werner. “A linear programming approach to max-sum problem: A review”. In: IEEE trans-
actions on pattern analysis and machine intelligence 29.7 (2007).

[250] Helmut Wielandt. “Permutation groups through invariant relations and invariant functions”. In:
(1969).

154

Doctoral Dissertation Haggai Maron August 2019

[251] Zhenqin Wu et al. “MoleculeNet: a benchmark for molecular machine learning”. In: Chemical sci-
ence 9.2 (2018), pp. 513–530.

[253] Yong Xia. “Second order cone programming relaxation for quadratic assignment problems”. In:
Optimization Methods & Software 23.3 (2008), pp. 441–449.

[254] Jianxiong Xiao et al. “Sun database: Large-scale scene recognition from abbey to zoo”. In: Computer
vision and pattern recognition (CVPR), 2010 IEEE conference on. IEEE. 2010, pp. 3485–3492.

[255] Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: arXiv preprint arXiv:1810.00826
(2018).

[256] Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: International Conference on
Learning Representations. 2019. URL: https://openreview.net/forum?id=ryGs6iA5Km.

[257] Pinar Yanardag and S.V.N. Vishwanathan. “Deep Graph Kernels”. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’15. 2015.
ISBN: 9781450336642. DOI: 10.1145/2783258.2783417.

[258] Jiaolong Yang, Hongdong Li, and Yunde Jia. “Go-ICP: Solving 3D Registration Efficiently and
Globally Optimally”. In: 2013 IEEE International Conference on Computer Vision (2013), pp. 1457–
1464. ISSN: 1550-5499. URL: http : / / ieeexplore . ieee . org / lpdocs / epic03 /
wrapper.htm?arnumber=6751291.

[259] Dmitry Yarotsky. “Universal approximations of invariant maps by neural networks”. In: arXiv preprint
arXiv:1804.10306 (2018).

[260] Li Yi et al. “A scalable active framework for region annotation in 3d shape collections”. In: ACM
Transactions on Graphics (TOG) 35.6 (2016), p. 210.

[261] Li Yi et al. “SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation”. In: arXiv
preprint arXiv:1612.00606 (2016).

[262] Rex Ying et al. “Hierarchical Graph Representation Learning with Differentiable Pooling”. In:
(2018). DOI: 10.1145/nnnnnnn.nnnnnnn. arXiv: 1806.08804. URL: http://arxiv.
org/abs/1806.08804.

[263] Yobi3d - free 3d model search engine. https://www.yobi3d.com. Accessed: 2016-10-15.
2016.

[264] Manzil Zaheer et al. “Deep sets”. In: Advances in Neural Information Processing Systems. 2017,
pp. 3391–3401.

[265] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. “A path following algorithm for the graph
matching problem”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 31.12
(2009), pp. 2227–2242.

[266] Yun Zeng et al. “Dense non-rigid surface registration using high-order graph matching”. In: Com-
puter Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE. 2010, pp. 382–
389.

[267] Muhan Zhang and Yixin Chen. “Weisfeiler-Lehman neural machine for link prediction”. In: Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM. 2017, pp. 575–583.

[268] Muhan Zhang et al. “An end-to-end deep learning architecture for graph classification”. In: Pro-
ceedings of AAAI Conference on Artificial Inteligence. 2018.

155

Doctoral Dissertation Haggai Maron August 2019

[269] Hong-Kai Zhao et al. “Implicit and nonparametric shape reconstruction from unorganized data using
a variational level set method”. In: Computer Vision and Image Understanding 80.3 (2000), pp. 295–
314.

[270] Qing Zhao et al. “Semidefinite programming relaxations for the quadratic assignment problem”. In:
Journal of Combinatorial Optimization 2.1 (1998), pp. 71–109.

[271] Feng Zhou and Fernando De la Torre. “Factorized graph matching”. In: Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 127–134.

[272] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Fast global registration”. In: European Conference
on Computer Vision. Springer. 2016, pp. 766–782.

[273] Silvia Zuffi and Michael J Black. “The Stitched Puppet: A Graphical Model of 3D Human Shape
and Pose”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2015, pp. 3537–3546.

156

	phd_thesis.title_page
	main

