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Problem statement

Easy Hard



Deep Learning #

Geometric Deep

Learning




Previous work (1)
features
- Per-vertex features (Guo et al. 15’) /ﬂ\

- Volumetric representation (Wu et al. 15’)

- Rendering based methods (Su et al. 15’)
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- Patch based methods (Masci et al. 15’, Boscaini et al. 16’)

- Learning in the spectral domain (Bruna et al. 13’)




Previous Work (2)

- Parameterization based methods (Sinha et al. 2016)
- High distortion
- High dimensional parameterization space




Our approach

- Map the surface to a flat torus

- Use its natural convolution

- Use off-the-shelf CNNs for images




What is required to define a CNN?
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The main idea: how to move on your domain
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Mobius Strip Il (M.C. Escher, 1963, Woodcut)



Translations
Two dimensional, commutative

lsometries of R2

Convolution
Linear

Translation invariant

Pooling
Non-linear (max)

Sub-translation invariant




Defining CNNs on surfaces




Translations on surfaces?

def

- Translation on surface = locally Euclidean translation




Which compact surfaces
admit non-vanishing vector fields?






Only the torus! . e

of vector field characteristic
- Poincaré-Hopf: For a compact orientable surface .
P P E index;. = X

- Index —a measure of the complexity near a vanishing point

- Non-vanishing vector field implies genus 1 - torus




CNN on flat torus
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Recap

- CNN is well-defined over flat-torus

- Roadblocks for CNN on sphere-type surfaces

- Topological: No locally Euclidean translations on spheres
- Geometrical: The flat torus is flat and our surface is not



Solution: Map the surface to a flat torus




Torus 4-cover
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.
Mapping the Torus to the flat Torus
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Aigerman and Lipman, 2015
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Pull-back

Translations: pull-back Euclidean translations

Two dimensional, commutative

Sonformal maps

Pull-back convolution
Linear
Theorem: Translation invariance

Pull-back pooling
Non-linear (max)
Sub-translation invariant



Mapped functions




New layers

cyclic padding projection




Data generation
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Input image Labels




Test phase

- Aggregation from different triplets
- “Magnifying glass”

- Scale factor as weights




Human body segmentation /h«\ **hf--— /ﬁ\
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Train: 370 models Test: 18 models
FAUST, MIT, SCAPE, ADOBE SHRECO07




Easy functions

- Normals Raw

- Average geodesic distance f?
I! i ' Complex

- Wave kernel signature




Human body segmentation /h«\ **hf--— /ﬁ\
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Train: 370 models Test: 18 models
FAUST, MIT, SCAPE, ADOBE SHRECO07




..
CNN applied to other data




Biological landmarks detection

» Train: 73 teeth from BOYER
- Only curvature and scale factor

Test: 8 teeth from BOYER



Biological landmarks
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Biological landmarks

[Aigerman and Lipman 16]



Future applications

- Texture prediction on surfaces

- BRDF prediction

- UV coordinates learning




Conclusion

- CNN of sphere-type surfaces
- We defined a meaningful convolution on surfaces

- Learns from raw features
- Reusing CNN software for images

Limitations and future work

- Scope: Only sphere type surfaces
- No canonical choice for triplets (and convolutions)

- Learn aggregation operator




The End

- Code is available online: : ' ' i1/~ im/
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