Convolutional neural networks on surfaces via seamless toric covers

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir G. Kim, Yaron Lipman

Problem statement

Previous work (1)

- Per-vertex features (Guo et al. 15')
- Volumetric representation (Wu et al. 15')
- Rendering based methods (Su et al. 15')
- Patch based methods (Masci et al. 15', Boscaini et al. 16')
- Learning in the spectral domain (Bruna et al. 13')

Previous Work (2)

- Parameterization based methods (Sinha et al. 2016)
 - High distortion
 - High dimensional parameterization space

Our approach

• Map the surface to a flat torus

Use its natural convolution

• Use off-the-shelf CNNs for images

What is required to define a CNN?

The main idea: how to move on your domain

Möbius Strip II (M.C. Escher, 1963, Woodcut)

Translations

Two dimensional, commutative Isometries of $\ensuremath{\mathbb{R}}^2$

Convolution

Linear Translation invariant

Non-linear (max) Sub-translation invariant

Defining CNNs on surfaces

Translations on surfaces?

- Translation on surface $\stackrel{\text{\tiny def}}{=}$ locally Euclidean translation
- Flow along non-vanishing vector fields

Which compact surfaces admit non-vanishing vector fields?

Flat torus \mathcal{T}

- Translations "modulo 1"
- Full translation invariance on the *flat torus*

Only the torus!

• Poincaré-Hopf: For a compact orientable surface

• Index – a measure of the complexity near a vanishing point

• Non-vanishing vector field implies genus 1 - torus

$$\sum_i \mathrm{index}_{x_i} = \chi$$

CNN on flat torus

Recap

- CNN is well-defined over flat-torus
- Roadblocks for CNN on sphere-type surfaces
 - **Topological**: No locally Euclidean translations on spheres
 - Geometrical: The flat torus is flat and our surface is not

Solution: Map the surface to a flat torus

Mapping the Torus to the flat Torus

Aigerman and Lipman, 2015

The pullback translation

Pull-back

Translations: pull-back Euclidean translations

Two dimensional, commutative <u>Conformal</u> maps

Pull-back convolution

Linear **Theorem**: Translation invariance

Non-linear (max) Sub-translation invariant

Mapped functions

New layers

Data generation

Labels

Test phase

- Aggregation from different triplets
- "Magnifying glass"
- Scale factor as weights

Easy functions

Normals

• Average geodesic distance

Wave kernel signature

Raw

CNN applied to other data

Biological landmarks detection

- Train: 73 teeth from BOYER
- Only curvature and scale factor

Test: 8 teeth from BOYER

Biological landmarks

Biological landmarks

Future applications

• Texture prediction on surfaces

BRDF prediction

• UV coordinates learning

Conclusion

CNN of sphere-type surfaces

- We defined a meaningful convolution on surfaces
- Learns from raw features
- Reusing CNN software for images

Limitations and future work

- Scope: Only sphere type surfaces
- No canonical choice for triplets (and convolutions)
- Learn aggregation operator

The End

- Code is available online: <u>http://www.wisdom.weizmann.ac.il/~haggaim/</u>
- Support
 - ERC Starting Grant (SurfComp)
 - Israel Science Foundation
 - I-CORE
- Thanks for listening!

