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Problem statement
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Easy Hard
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Deep Learning

Geometric Deep 
Learning



Previous work (1)
• Per-vertex features (Guo et al. 15’)

• Volumetric representation (Wu et al. 15’)

• Rendering based methods (Su et al. 15’)

• Patch based methods (Masci et al. 15’, Boscaini et al. 16’)

• Learning in the spectral domain (Bruna et al. 13’)
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Previous Work (2)
• Parameterization based methods (Sinha et al. 2016)
• High distortion
• High dimensional parameterization space
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Our approach
• Map the surface to a flat torus

• Use its natural convolution

• Use off-the-shelf CNNs for images
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What is required to define a CNN?
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The main idea: how to move on your domain
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Möbius Strip II (M.C. Escher, 1963, Woodcut)



• Translations
Two dimensional, commutative
Isometries of ℝ"

• Convolution
Linear
Translation invariant

• Pooling
Non-linear (max)
Sub-translation invariant
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Defining CNNs on surfaces
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Translations on surfaces?
• Translation on surface ≝ locally Euclidean translation

• Flow along non-vanishing vector fields
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Which compact surfaces 
admit non-vanishing vector fields?
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Flat torus !
• Translations “modulo 1”
• Full translation invariance on the flat torus
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Only the torus!
• Poincaré-Hopf: For a compact orientable surface

• Index – a measure of the complexity near a vanishing point

• Non-vanishing vector field implies genus 1 - torus
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CNN on flat torus
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Cyclic padding



Recap
• CNN is well-defined over flat-torus

• Roadblocks for CNN on sphere-type surfaces
• Topological: No locally Euclidean translations on spheres
• Geometrical: The flat torus is flat and our surface is not
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Solution: Map the surface to a flat torus 



Torus 4-cover
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Mapping the Torus to the flat Torus
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Aigerman and Lipman, 2015
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The pullback translation
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Pull-back
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Pull-back pooling
Non-linear (max)
Sub-translation invariant

Pull-back convolution
Linear
Theorem: Translation invariance

Translations: pull-back Euclidean translations
Two dimensional, commutative
Conformal maps



Mapped functions
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New layers
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projectioncyclic padding



Data generation
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LabelsInput image



Test phase
• Aggregation from different triplets
• “Magnifying glass”
• Scale factor as weights
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Human body segmentation 
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Train: 370 models 
FAUST, MIT, SCAPE, ADOBE

Test: 18 models 
SHREC07



Easy functions
• Normals

• Average geodesic distance

• Wave kernel signature
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Raw

Complex



Human body segmentation 
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Train: 370 models 
FAUST, MIT, SCAPE, ADOBE

Test: 18 models 
SHREC07



CNN applied to other data
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Biological landmarks detection
• Train: 73 teeth from BOYER
• Only curvature and scale factor
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Test: 8 teeth from BOYER



Biological landmarks
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Biological landmarks
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[Aigerman and Lipman 16’]



Future applications
• Texture prediction on surfaces

• BRDF prediction

• UV coordinates learning 
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Conclusion
• CNN of sphere-type surfaces
• We defined a meaningful convolution on surfaces
• Learns from raw features
• Reusing CNN software for images

• Scope: Only sphere type surfaces
• No canonical choice for triplets (and convolutions)
• Learn aggregation operator
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Limitations and future work



The End
• Code is available online: http://www.wisdom.weizmann.ac.il/~haggaim/

• Support
• ERC Starting Grant (SurfComp)
• Israel Science Foundation
• I-CORE

• Thanks for listening!
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