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Background

Graph matching is a generic and popular modeling tool for problems in computa-
ঞonal sciences such as computer vision, computer graphics, medical imaging and
machine learning.

In general, graph matching refers to several different opঞmizaঞon problems of the
form:

min
X

E(X) s.t. X ∈ F (1)

where F ⊂ Rn×n0 is a collecঞon of matchings between verঞces of two graphs
GA and GB. Usually, E(X) = [X ]TM [X ] + aT [X ] is a quadraঞc funcঞon in X
and F is the set of permutaঞon matrices. O[en, M quanঞfies the discrepancy
between edge affiniঞes exerted by the matchingX . Edge affiniঞes are represented
by symmetric matrices A ∈ Rn×n, B ∈ Rn0×n0.

Mulঞple works have considered the relaxaঞon:
E(X) = −tr(BXTAX) s.t. X ∈ DS (2)

Where DS is the set of doubly-stochasঞc matrices, the convex-hull of the permu-
taঞon matrices. This energy measures the inner product of the relabeled affinity
matrix XAXT with the matrix B. For example if the two graphs are isomorphic
the minimum of this funcঞonal is obtained by the permutaঞon X that represents
this isomorphism.

E is in general indefinite, resulঞng in a non-convex relaxaঞon. In case E is concave
the relaxaঞon enjoys three key properঞes:

Its soluঞon set is the same as the original problem.
Its set of local opঞma are all permutaঞons.
For every descent direcঞon the maximal step is opঞmal.

[Vogelstein et al., 2015, Lyzinski et al., 2016] suggest to locally opঞmize this relax-
aঞon with the Frank-Wolfe algorithm and moঞvate it by proving that for a specific
class of adjacencymatrices, the opঞmal soluঞon of the relaxaঞon almost always co-
incides with the GM opঞmal soluঞon. [Vestner et al., 2017, Boyarski et al., 2017]
make the useful observaঞon thatE is concave for some important cases of affiniঞes
such as the heat kernels and Gaussians.

This work

In this paper we introduce the concepts of condiࢼonally concave and probably
condiࢼonally concave energies E(X) and show that these energies encapsulate
many pracঞcal instances of the graph matching problem, including matching Eu-
clidean graphs and graphs on surfaces.

Conditionally concave energies

Condiࢼonally concave energy E(X) means that the restricঞon of the Hessian M of
the energy E to the linear space

lin(DS) =
{
X ∈ Rn×n | X1 = 0, XT1 = 0

}
(3)

is negaঞve definite, Where lin(DS) is the linear part of the affine-hull of the doubly-
stochasঞc matrices.

Our first result shows that there is a large class of affinity matrices resulঞng in
condiঞonally concave E.

Proposiঞon 1. Let Φ : Rd → R, Ψ : Rs → R be both condiঞonally posiঞve (or
negaঞve) definite funcঞons of order 1. For any pair of graphs with affinity matrices
A, B ∈ Rn×n so that

Aij = Φ(xi − xj), Bij = Ψ(yi − yj) (4)
for some arbitrary {xi} ⊂ Rd, {yi} ⊂ Rs, the energy E(X) is condiঞonally concave.
Proof idea: we show that the projecঞon onto lin(DS) can be obtained as the Kro-
necker product of a projecঞon onto {1}⊥.

Applicaঞon. Matching graphs with Euclidean affiniঞes:
Aij = ∥xi − xj∥2 , Bij = ∥yi − yj∥2 (5)

Includes distances that can be isometrically embedded in Euclidean spaces such as
diffusion distances, distances induced by deep learning embeddings, Mahalanobis
distances and the spherical distances.

Probably conditionally concave energies

An energy E is called probably condiࢼonally concave if it is rare to find a linear
subspace D of lin(DS) so that the restricঞon of E to it is convex, that is M |D ⪰ 0.
The following theorem bounds the probability of finding uniformly at random a
linear subspace D such that the restricঞon of M ∈ Rm×m to D is convex.

Proposiঞon 2. Let M ∈ Rm×m be a symmetric matrix with eigenvalues λ1, . . . , λm.
Then, for all t ∈ (0, 1

2λmax
):

Pr(M |D ⪰ 0) ≤
m∏

i=1
(1 − 2tλi)−d

2, (6)

Example. Let U be a unitary matrix and consider the matrix:

U · diag
( 0.51m︷ ︸︸ ︷

−1, −1, . . . , −1,
0.49m︷ ︸︸ ︷

1, 1, . . . , 1
)

· UT

It is extremely unlikely to sample a convex direcঞon in dimension m ≈ 3002, i.e.,
the probability will be ≈ 4 · 10−5.

Applicaঞon. For example, matching problems in which the affiniঞes A, B describe
geodesic distances on surfaces result in probably condiঞonally concave E.

We further use equaঞon (6) to prove the following:

Proposiঞon 3. There exists a rather general probability space of Hessians M so
that the probability of local minima of E(X) to be outside F is very small.

This probability space is of the form

Ωm =
{
UΛm,pU

T | U ∈ O(m)
}

, Λm,p =
( (1−p)m︷ ︸︸ ︷

λ1, λ2, . . .,
pm︷ ︸︸ ︷µ1, µ2, . . .

)
where λi ≤ −b, b > 0 are the negaঞve eigenvalues; 0 ≤ µi ≤ a, a > 0 are the
posiঞve eigenvalues, the raঞo of posiঞve to negaঞve eigenvalues is a constant
p ∈ (0, 1/2) and a ≤ b.

Graph matching with one sided permutations

In case we want to opঞmize over the one-sided permutaঞons, namely F =
{X ∈ {0, 1}n×n0 | X1 = 1}, some of the previous energies might not yield concave
relaxaঞons. In this case we devise a variaঞon of the Frank-Wolfe algorithm us-
ing a concave search procedure. That is, in each iteraঞon, instead of standard line
search we subtract a convex energy from E(X) that is constant on F unঞl we find
a descent step.

Experiments
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Figure 1: Anatomical dataset embedding in the plane. Squares and triangles represent different
bone types, lines represent temporal trajectories.
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Figure 2: (a) SHREC07 benchmark: Cumulaঞve distribuঞon funcঞons of all errors (le[) and mean
error per shape (right).
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