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Background

Graph matching is a generic and popular modeling tool for problems in computa-
fional sciences such as computer vision, computer graphics, medical imaging and
machine learning.

n general, graph matching refers to several different optimization problems of the
form:

min E(X) st. XeF (1)

where F C R™" |s a collection of matchings between vertices of two graphs
Gaand Gp. Usually, E(X) = [ X" M[X] + o' [X] is a quadratic function in X
and F Is the set of permutation matrices. Often, M quanhfes the discrepancy
netween edge affinities exerted by the matching X. Edge affinities are represented
oy symmetric matrices A € R"*" B € R~

A

Multiple works have considered the relaxation:
E(X)=—tr(BX'AX) st. X € DS (2)
Where DS Is the Set of doubly-stochastic matrices, the convex-hull of the permu-

tation matrices. This energy measures the inner product of the relabeled affinity
matrix XAX' with the matrix B. For example if the two graphs are isomorphic
the minimum of this functional is obtained by the permutation X that represents

this Isomorphism.

E i1s in general indefnnite, resulting in a non-convex relaxation. In case E'Is concave
the relaxation enjoys three key properties:

= [ts solution set Is the same as the original problem.

= |ts set of local optima are all permutations.
= For every descent direction the maximal step is optimal.

Vogelstein et al., 2015, Lyzinski et al., 2016] suggest to locally optimize this relax-
ation with the Frank-Wolfe algorithm and motivate it by proving that for a specific
class of adjacency matrices, the optimal solution of the relaxation almost always co-
incides with the GM optimal solution. [Vestner et al., 2017/, Boyarski et al., 2017/
make the useful observation that £ I1s concave for some important cases of affinities
such as the heat kernels and Gaussians.

This work

Conditionally concave energies

In this paper we introduce the concepts of conditionally concave and probably
conditionally concave energies E(X) and show that these energies encapsulate
many practical instances of the graph matching problem, including matching Eu-
clidean graphs and graphs on surfaces.

Conditionally concave energy E(X) means that the restriction of the Hessian M of
the energy E to the linear space

lin(DS) = {X € R™" | X1 =0,X"1=0] (3)
s negative definite, Where lin(DS) is the linear part of the affine-hull of the doubly-
stochastic matrices.

Our first result shows that there Is a large class of affinity matrices resulting in
conditionally concave E.

Proposition 1. let ® : RY — R, ¥ : R®* — R be both conditionally positive (or
negative) definite functions of order 1. For any pair of graphs with affinity matrices
A, B € R"™" so that

Ay = d(z; — 33]')7 bij = W(y; — ?Jj> (4)
for some arbitrary {z;} € R% {y;} C R® the energy E(X) is conditionally concave.

Proof idea: we show that the projection onto lin(DS) can be obtained as the Kro-
necker product of a projection onto {1}~

Application. Matching graphs with Euclidean affinities:

Bij = llyi — yjll (5)
Includes distances that can be isometrically embedded in Euclidean spaces such as
diffusion distances, distances induced by deep learning embeddings, Mahalanobis
distances and the spherical distances.

Ay = ||z — x4l

Probably conditionally concave energies

An energy E Is called probably conditionally concave if 1t Is rare to find a linear
subspace D of lin(DS) so that the restriction of E to it is convex, that is M|p = 0.
The following theorem bounds the probability of finding uniformly at random a
Inear subspace D such that the restriction of M € R™*™ to D Is convex.

Proposition 2. Let M € R"™ "™ be a symmetric matrix with eigenvalues Ay,..., A\,
Then, for all t € (0,5—):
P(M]|p = 0) < T1(1 — 2t\,) %, (6)
1=1

Example. Let U be a unitary matrix and consider the matrix:
0.51m 0.49m

U-diag(=T,—1,...,-1,T,1,...,T) - U’

t is extremely unlikely to sample a convex direction in dimension m = 3007, i.e
the probability will be ~ 4 - 107.

Application. For example, matching problems in which the affinities A, B describe
cgeodesic distances on surfaces result in probably conditionally concave E.

We further use equation (6) to prove the following:

Proposition 3. There exists a rather general probability space of Hessians M so
that the probability of local minima of E(X) to be outside F is very small.

This probability space Is of the form

(1—p)m pm

Q= {UAy, U | U € O(m)}b, Ay = (N A, T iy )

where \; < —b, b > 0 are the negative eigenvalues; 0 < u; < a, a > 0 are the
positive eigenvalues, the ratio of positive to negative eigenvalues Is a constant

p € (0,1/2) and a < b.

Graph matching with one sided permutations

In case we want to optimize over the one-sided permutations, namely F =
{X €{0,1}""™ | X1 =1}, some of the previous energies might not yield concave
relaxations. In this case we devise a variation of the Frank-Wolfe algorithm us-
INg a concave search procedure. Thatis, in each iteration, instead of standard line
search we subtract a convex energy from E(X) that is constant on F until we find
a descent step.

Experiments
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-igure 1: Anatomical dataset embedding in the plane. Squares and triangles represent different

pone types, lines represent temporal trajectories.
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Figure 2: (@) SHRECO7 benchmark: Cumulative distribution functions of all errors (left) and mean
error per shape (right).
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