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Motivation

We present a family of neural network ar-
chitectures suitable for learning irregular
data in the form of graphs, or more gen-
erally, hypergraphs.

The main idea is to adapt the concept of
image convoluঞons, as a means of dramat-
ically reducing the number of parameters
in a neural network, to graph and hyper-
graph data.

Algebraic view of convolutional neural networks

Translaঞons as image symmetries. Translaঞons of images are transformaঞons T that
do not change the image content. Most funcঞons f one is interested to learn on
images, like image classificaঞon, will be invariant to translaঞons, namely will saঞsfy
f (x) = f (T · x) for all translaঞons T , where x represents the image, and T the appli-
caঞon of the translaঞon to the image.

Mulঞ layer Perceptrons. A Mulঞ-Layer perceptron (MLP) is a general-purpose archi-
tecture that can approximate any conঞnuous funcঞon (on compact sets).

Invariant Model. Moঞvated by the fact that we are looking to approximate invariant
funcঞons, it is reasonable to restrict our models to invariant funcঞons as well. This
can be done by replacing the general linear transformaঞons x 7→ L(x) = Ax + b
with linear transformaঞons that are themselves invariant to translaঞons. Sadly, this
condiঞon implies that A and b are constant, so these networks lack expressiveness.

Equivariant-Invariant Model. A much
more useful idea is to think about equiv-
ariant linear operators, namely linear oper-
ators that commute with the translaঞons,
mathemaঞcally saঞsfyingL(T ·x) = T ·L(x)
for all x, T . This condiঞon implies that A
is a convoluঞon operator (in fact, equiv-
ariance is a defining property of convolu-
ঞons) and b is a constant vector.

As for images, we will consider neural net-
works defined by composing several equivariant layers Li, followed by a single invari-
ant layer, H, and an MLP, M, namely f (X) = M ◦ H ◦ Lk ◦ · · · ◦ L1(X).

Representing graphs as tensors

A graph can be defined as a set of n elements (nodes) for which we have some infor-
maঞon xi a�ached to its i-th element, and some informaঞon xij a�ached to pairs of
elements (edges). We will encode this data using a tensorX ∈ Rn×n, where the diago-
nal elements Xi,i = xi encode the node data and the off-diagonal elements,Xi,j = xij

, i ̸= j , the edge data.

We represent hypergraph data using X ∈ Rnk, and each entry Xi1,i2,...,ik
represents the

informaঞon of the corresponding k-tuple of elements.

Symmetries of graphs

Transformaঞons that do “not change” the input data will be called symmetries. Two
graphs X, Y will be considered as the same (a.k.a. isomorphic) if there exists a per-
mutaঞon so that Y = p · X, where p · X is a rearrangement of the rows and columns
of X according to p, that is, (p · X)i,j = Xp−1(i),p−1(j).

These symmetries generalize to hypergraphs where the permutaঞon p applied to all
dimensions of X ∈ Rnk, namely (p · X)i1,...,ik

= Xp−1(i1),...,p−1(ik).

Invariant graph networks

Similarly to the image case, trying to consider linear transformaঞons of graph dataX ∈
Rn×n that are invariant, i.e., L(p · X) = L(X), leads to a poor space of operators. Ex-
actly as in the image case, remedy comes from considering (the larger space of) equiv-
ariant operators, namely linear operators saঞsfying L(p · X) = p · L(X) for all p, X.

Note that in an IGN the hidden variables
can be arbitrary tensors, Y ∈ Rnk , even
when the input tensors are of a lower or-
der than k. Indeed, equivariant linear op-
erators can map between different order
tensors Rnk → Rnl.

Linear equivariant operators and the fixed point equations

Fixed point equaঞons. In [2] we are looking to characterize affine transformaঞons
Rnk → Rnl equivariant (l ≥ 1) or invariant (l = 0) to the permutaঞon acঞon X 7→ p · X,
as defined above: a linear transformaঞon L : Rnk → Rnl can be encoded as a tensor
L ∈ Rnk+l. The equaঞons L(p ·X) = p ·L(X) can be expressed compactly as p ·L = L.
Solving the fixed point equaঞons. Any soluঞon L is constant along orbits of the
permutaঞon group. For example, one can see that L1,1,2,3 is equal to all entries of
the form Li,i,j,s, where i, j, s are all different. In general L is constant along indices
i, j, s, t that have the same equality pa�ern, that is, indices that preserve the equality
and inequality relaঞons between pairs of indices. The number of different orbits is
the number of different equality pa�erns on four indices which equals the number of
parঞঞons of a set of size four, also known as the Bell Number; in this case, bell(4) = 15.

How expressive are IGNs?

Funcঞon approximaঞon point of view. In [2] we proved that a 2-IGNs, i.e., an IGN
with a maximal tensor degree of 2, can approximate any message passing neural net-
work to an arbitrary precision (on compact sets). Message passing neural networks
are very popular models for learning graph data which currently provide state of the
art results on various graph learning benchmarks. In [3] we further generalize this re-
sult and show that these networks are universal when using sufficiently large tensor
order k.

Graph discriminaঞon point of view. k-IGNs are ঞghtly
related to a hierarchy of graph isomorphism tests called
the Weisfeiler-Leman (WL) hierarchy. The WL hierar-
chy defines an algorithm, called k-WL, for every k ∈ N.
It can be shown that for any l > k, l-WL is strictly
more powerful than k-WL. In [1] we prove that k-IGNs
can discriminate graphs at least as good as the k-WL algorithm, for every k.

A simple and expressive variant of IGNs. The main draw-
back of k-IGNs is the fact that one needs to store and
process k-order tensors. In [1] we suggest a variant of 2-
IGNs that is at least as expressive as the 3-WL test. Hence,
strictly more expressive than message passing models.

Summary of the IGN expressiveness. The following figure
illustrates the expressiveness results for IGNs. It provides an overview of the main
tradeoffs between efficiency and approximaঞon power.
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