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In this paper, I review the main results obtained during my Ph.D. studies at
the Weizmann Institute of Science under the guidance of Professor Yaron
Lipman. Two fundamental problems in shape analysis were considered: (1)
how to apply deep learning techniques to geometric objects and (2) how to
compute meaningful maps between shapes. My work has resulted in several
novel methods for applying deep learning to surfaces, point clouds, and
hyper-graphs as well as new efficient techniques to solve relaxations of well-
known matching problems. The paper discusses these two problems, surveys
the suggested solutions and points out several directions for future work,
including a promising direction that combines both problems.
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1 INTRODUCTION
Shape analysis is concerned with studying and quantifying geometric
properties of objects such as curves, surfaces, and higher dimen-
sional manifolds. Among other fields, shape analysis techniques are
widely used in computer vision [Zhou et al. 2016], computer graph-
ics [Funkhouser and Kazhdan 2004], computational anatomy [Boyer
et al. 2011] and medical imaging [McInerney and Terzopoulos 1996].

During the last few years we tried to tackle two key questions in
shape analysis: (1) deep learning on geometric objects: i.e., How can
we apply deep learning to common shape representations such as
point clouds, surfaces, and graphs? (2) Shape matching: Given two
shapes, how can we compute a meaningful map between them. The
rest of the introduction put these two problems in the proper context.

Applying deep learning to geometric objects is a relatively new
problem. The overwhelming success of deep learning in advancing
the state of the art in various learning challenges and domains [LeCun
et al. 2015] inspires research efforts attempting to achieve similar
success for geometric objects such as point-clouds, graphs and dis-
cretized surfaces [Bronstein et al. 2017]. Adapting deep learning
methods to the geometric setting is a particularly interesting and
challenging problem since each of these objects admits different
representations, and consequently, different symmetries: for exam-
ple, surfaces and point clouds (i.e., finite subsets of the Euclidean
space) are invariant to rigid Euclidean transformations, while graphs
are invariant to node relabeling. Trying to directly apply commonly
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Fig. 1. The main problems considered in my Ph.D. thesis: applying
deep learning to geometric objects such as point clouds, surfaces, and
graphs. Bottom: Two instances of shape matching problems.

used neural networks (e.g., convolutional neural networks or fully
connected networks) to geometric objects is not well-defined in some
cases, or performs poorly in other cases. During the last years, we
developed network architectures and layers for all of the geometric
objects mentioned above, as well as analyzed widely-used models.

In contrast to the first problem, shape matching problems have
been studied for decades [Van Kaick et al. 2011]. These problems are
among the most fundamental problems in geometric data analysis,
where the task is finding a (semantically) meaningful map between
one shape to another shape. A popular way of handling these hard
problems is by first posing them as quadratic integer optimization
problems, relaxing them to a continuous domain and solving the
relaxed problem, which is often more tractable. In most cases, there
is an inherent tradeoff between the tightness of the relaxation (i.e.,
how well its solution approximates the original problem’s solution),
and the computational resources needed to optimize it. During the last
few years, we devised several efficient methods for solving widely
known relaxations of prevalent matching problems.

Figure 1 illustrates these two problems. The top part illustrates
the geometric deep learning problem: applying deep learning to
irregular domains. The bottom part illustrates two instances of the
shape matching problem: matching 3D models (left, the map is
represented using color coding) and matching an image collection to
a grid structure according to color features (right).
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Fig. 2. The point cloud convolution suggested in [Atzmon et al. 2019]:
First, a function over the point cloud (in this case the constant one) is
extended to a continuous volumetric function over the ambient space;
second, a continuous volumetric convolution is applied to this function
(without any discretization or approximation); and lastly, the result is
restricted back to the point cloud.

The rest of this paper is organized in the following way: Section
2 summarizes several papers that targeted the first problem. Section
3 summarizes efforts that were done in order to solve the second
problem. Section 4 concludes that paper and discusses possible future
work directions.

2 DEEP LEARNING ON GEOMETRIC OBJECTS
The problem setting is as follows: the input consists of n geometric
objects Oi , possibly with corresponding descriptor functions fi :
Oi → Rd , and targets ti that describe some semantic property of
the object (e.g., does a surface represent a dog or a cat). Our task is
to find a function F that approximates this functional relation, i.e.,
F (Oi , fi ) ≈ ti and generalizes well to unseen objects.

Discretized surfaces and point clouds. We first studied deep learn-
ing of discretized surfaces [Maron et al. 2017] and point clouds
[Atzmon et al. 2018]. In both cases, our methods are based on the ob-
servation that finding a well-behaved mapping from the given object
(surface or point cloud) to a domain with a well-defined convolution,
allows us to pullback this convolution to the object. The pullback
operation is done by first mapping a function from the object to this
domain, applying the convolution and mapping the result back to the
object. In [Maron et al. 2017] we devised a way to map sphere-type
surfaces (i.e., surfaces that are topologically equivalent to a sphere)
to a periodic planar domain (a torus), for which we have the well-
known 2D convolution. Using this mapping mechanism, we convert
input surface descriptors to images, thus reducing the problem of
learning surfaces to the problem of learning images. This reduction
has the advantage of being able to utilize powerful deep learning
machinery and successful architectures developed for images, as
opposed to methods that are specifically tailored for surfaces (e.g.,
[Masci et al. 2015]). In a follow-up work [Ben-Hamu et al. 2018], we
used a similar surface-image representation for the task of generating
novel shapes using generative adversarial networks. In particular, we

Fig. 3. An illustration of symmetries of graph representations. When
representing a graph using an adjacency matrix, each ordering of the
nodes gives rise to a new, possibly different adjacency matrix of the
same graph. In [Maron et al. 2019a,b] we suggest neural networks
that are invariant to such symmetries.

have successfully applied our method to the task of human model
generation. In another recent follow-up work [Haim et al. 2018], we
devise a broad family of mappings from sphere-type surfaces to the
torus, which represents surfaces more faithfully due to reduced area
distortion. This method achieves state of the art results on 3D shape
analysis tasks such as model segmentation and retrieval.

The mapping methods mentioned above rely heavily on the sur-
face’s connectivity information and cannot be adapted to the point
cloud scenario [Atzmon et al. 2019]. In this case, which is of particu-
lar interest for applications, we opt for mapping point cloud functions
to functions defined on R3. This is done by defining an extension
operator that generates a volumetric function from a point cloud func-
tion via a Radial Basis Function (RBF) approximation. Similarly, the
kernel is defined to be a sum of weighted RBFs, where the weights
are the learnable parameters. The convolution of a point cloud func-
tion can now be defined using the pullback mechanism mentioned
above: first mapping the point cloud function to a volumetric func-
tion, applying the standard convolution in R3 and sampling the result
on the point cloud in order to get new point cloud function. This
process is illustrated in Figure 2.

Graphs and hyper-graphs. In a related line of work, we study a
popular model for constructing networks that are invariant to natural
transformations of the input object [Hartford et al. 2018; Maron et al.
2019b; Ravanbakhsh et al. 2017; Zaheer et al. 2017]. Given a group
G acting on an input object, this model is composed of a concate-
nation of equivariant/invariant linear layers with nonlinearities. A
fundamental problem when constructing such models is finding the
maximal set of linear invariant or equivariant operators with respect
to the relevant group. In [Maron et al. 2019b], we addressed this
problem for the natural symmetry groups of graphs and hyper-graphs.
In this case, the input is an affinity tensor A ∈ Rn

k
that describes

relations between ordered subsets of k elements in a set (e.g., in the
case k = 2, A is a graph affinity matrix). Note that these tensors
adhere to a specific reordering symmetry: reordering the nodes of
the hyper-graph results in a different affinity tensor that represents
the same hyper-graph. Figure 3 illustrates this symmetry. In this pa-
per, we provided a full characterization of affine functions that are
equivariant to this reordering operation. One surprising fact is that
the dimension of the space of equivariant functions does not depend
on n, the number of nodes. This fact allowed us to construct deep
invariant networks that can process graphs of any size. Theoretically,
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Fig. 4. The permutation equivariant block suggested in [Maron et al.
2019a]. Three different Multi-Layer Perceptrons are applied to the
feature dimension of the input tensor. Matrix multiplication is applied
to the output of two of them while the third output is concatenated.

we show that this construction gives rise to a deep invariant model
that can approximate any message passing neural network [Gilmer
et al. 2017], the current state of the art in graph neural networks.

In [Maron et al. 2019c], we study the approximation power of the
invariant models mentioned above. We consider the rather general
case of permutation groups acting on Rn by permuting the coordi-
nates of vectors and show three main results. The first result, states
that this model can approximate any continuous invariant function
to arbitrary precision. The proof is constructive and makes use of
high order tensors, that is, tensors of the form A ∈ Rn

k
for k > 1,

which might be computationally prohibitive. Our second result shows
that this problem cannot be alleviated since there exist an infinite
family of permutation groups for which using high order tensors is
necessary for obtaining the universal approximation property. Our
last result considers the most important case for applications, i.e.,
networks that use only first order tensors (e.g., k = 1), and provides
a necessary condition for a permutation group to have the universal
approximation property in this case.

In our latest paper [Maron et al. 2019a] we give more evidence to
the fact that higher-order networks are more expressive, and suggest
to deviate from the linear equivariant model that was suggested
above for achieving better complexity vs. expressivity tradeoff. More
precisely, we show that a k-order networks can approximate the k-
Weisfeiler Lehman (k-WL) graph isomorphism test [Xu et al. 2018],
which gives rise to graph models that are more powerful than message
passing neural networks. We also suggest a new simple architecture,
composed of blocks that apply Multi Layer Perceptrons (MLP) to the
edge and node features and then matrix multiplication. This model
is shown to have 3-WL expressivity, strictly more powerful than
message passing networks. See Figure 4 for an illustration of the
suggested block.

3 RELAXATIONS OF MATCHING PROBLEMS
Three of our works devise scalable approaches for solving well-
known tight relaxations of popular matching problems. In all cases,
we started from a classic semidefinite relaxation [Helmberg 2000] in
which the quadratic terms are linearized at the cost of adding a new
large optimization variable. In general, this is a tight relaxation that
can be solved efficiently for only small-sized problems.

Trajectory
Humerus Bone
Tibia Bone

Fig. 5. Anatomical dataset embedding in the plane obtained using the
method suggested in [Maron and Lipman 2018]. Squares and triangles
represent different bone types; lines represent temporal trajectories.

In [Maron et al. 2016] the problem of jointly aligning and match-
ing two point clouds is considered. More precisely, Given two d-
dimensional point clouds, P ,Q ∈ Rd×n , which are neither aligned
nor consistently labeled, the task is to find an orthogonal transforma-
tion R ∈ O(d) and a permutation X ∈ Πn minimizing the distance
between the point clouds:

d(P ,Q) = min
X ,R

∥RP −QX ∥2F

s.t. X ∈ Πn

R ∈ O(d)

This is a central problem in shape analysis with many applications in
computer vision and computer graphics. Applying the standard semi-
definite relaxation results in a relaxation that can be solved for up to
15 points. Our key insight is that the large semidefinite constraint can
be shown to be equivalent to several smaller semidefinite constraints.
This observation allowed us to solve problems with significantly
larger number of points.

Our motivation in [Dym et al. 2017] was to find an efficient way
of optimizing a tight relaxation to the graph matching problem (GM).
Given two graphs represented by affinity matrices A,B ∈ Rn×n

the GM problem is the problem of finding a permutation matrix X
that minimizes a quadratic objective that measures the discrepancy
between edge affinities of the graph, e.g.,

E(X ) = −tr(AXBXT )

As in [Maron et al. 2016], applying the standard semidefinite relax-
ation is impractical for real-sized problems. The key contribution of
this paper is showing that this semidefinite relaxation is equivalent to
a convex quadratic program, which can be solved more efficiently.
Using this observation, we optimize this relaxation for graphs of
much larger size. Figure 1 (bottom) shows results that were obtained
by this method. In [Kushinsky et al. 2019], we show how to approxi-
mately minimize another relaxation that originates from the lifting
method, by using a Sinkhorn-type method [Cuturi 2013].

In [Maron and Lipman 2018], we analyze the common doubly-
stochastic relaxation for the GM problem. In this case, the domain of
the relaxation is the convex hull of all permutation matrices, and the
objective is again E(X ). Our first result shows that many instances of
this relaxation, e.g., when matching graphs represented by Euclidean
distance affinities, are concave relaxations. This is a significant result
since concave relaxations have two important advantages: (i) every
local minimum is a permutation matrix and (ii) the set of global
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minima of the original problem and the relaxation is the same. Dif-
ferently put, the relaxation process does not yield new solutions
as well as alleviates the need to project the solution of the relaxed
problem onto the permutation matrices (a step which is often not
optimal). Our second result shows that many other popular use cases,
e.g., when matching graphs represented by geodesic distance affinity
matrices, are concave with high probability, meaning it is rare to
find a direction on which the restriction of the objective is convex.
we also show that in these cases the relaxation enjoys the advan-
tages mentioned above with high probability. Figure 5 illustrates
an application of this concave relaxation to anatomical shape space
analysis: We match a dataset of 67 mice bone surfaces acquired using
micro-CT. The dataset consists of eight time series. Each time series
captures the development of one type of bone over time. We used
Multi-Dimensional Scaling (MDS) [Cox and Cox 2000] to assign 2D
coordinates to each surface using a dissimilarity matrix we obtained
from matching all pairs of bones.

4 CONCLUSION
Although considerable progress was obtained in the last few years,
both problems considered in this paper are far from being solved.
As for the problem of deep learning on geometric objects, there are
no methods that can work on all types of meshes, including triangle
soups which are abundant in applications. A possible way to tackle
this problem is using the hyper-graph learning approach from [Maron
et al. 2019b] as was recently suggested by [Albooyeh et al. 2019].
As for matching problems, there is still no silver bullet solution for
matching three-dimensional shapes. One prominent direction is to
learn how to efficiently solve these hard optimization problems, as
was suggested in e.g.[Li et al. 2018; Masci et al. 2015; Wei et al.
2016].
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