Introduction

We consider the problem of graph learning, namely finding a functional relation between input graphs (more generally, hyper-graphs) \mathcal{G}^ℓ and corresponding targets T^ℓ .

Data. A (hyper-)graph data point $\mathcal{G} = (\mathbb{V}, \mathbf{A})$ consists of a set of n nodes \mathbb{V} , and values **A** attached to its hyper-edges. These values are encoded in a tensor **A**. For example, it is customary to represent a graph using a binary adjacency matrix A, where A_{ij} equals one if vertex i is connected to vertex j and zero otherwise. We denote the set of order-k tensors by \mathbb{R}^{n^k} .

Data symmetry. Relabeling the nodes does not change the graph.

Task. The task at hand is constructing a functional relation $f(\mathbf{A}^{\ell}) \approx T^{\ell}$, where f is a neural network.

invariance. If $T^{\ell} = t^{\ell}$ is a single output response then it is natural to ask that f is order invariant. For graph data, f is order invariant if it satisfies $f(\mathbf{P}^T \mathbf{A} \mathbf{P}) = f(\mathbf{A})$ for any permutation matrix P.

equivariance. If the targets T^{ℓ} specify output response in a form of a tensor, $T^{\ell} =$ \mathbf{T}^{ℓ} , then it is natural to ask that f is order equivariant, that is, f commutes with the renumbering of nodes operator acting on tensors. Using the above adjacency matrix example f is equivariant if it satisfies $f(\mathbf{P}^T \mathbf{A} \mathbf{P}) = \mathbf{P}^T f(\mathbf{A}) \mathbf{P}$ for every permutation matrix \boldsymbol{P} .

Goal

Following the standard paradigm of neural-networks where a network f is defined by alternating compositions of linear layers and non-linear activations, we set as a goal to characterize all *linear* invariant and equivariant layers.

Figure 1. Invariant network architecture. L_i denotes linear equivariant layers, h denotes an invariant layer and m is a fully connected network

Invariant and Equivariant Graph Networks

Haggai Maron, Heli Ben-Hamu, Nadav Shamir & Yaron Lipman

Weizmann Institute of Science

Contributions

In this paper, we provide a full characterization of permutation invariant and equivariant linear layers for general tensor input and output data. Our main contributions are:

- b(k+l)
- 2. We present a formula for an orthogonal basis for this space.
- 3. We show that our model can represent message passing layers [1] to an arbitrary precision on compact sets.

b(k) is the k-th Bell number: the number of possible partitions of a set of size k.

Fixed-point equations

equivalent to:

 $oldsymbol{P}\otimesoldsymbol{P}\operatorname{vec}(oldsymbol{I}$

for every permutation matrix P.

In the general case for order-k tensor data $A \in \mathbb{R}^{n^k}$ over one node set, V, we have:

invaria	nt $oldsymbol{L}$: 1	

equivariant L :

for every permutation matrix P, where $P^{\otimes k} = \overline{P \otimes \cdots \otimes P}$.

permutation p where \star denotes the relabeling operator.

Solving the fixed point equations

Equality patterns. For multi-indices $a, b \in [n]^{\ell}$ we set $a \sim b$ iff a, b have the same equality pattern, that is $a_i = a_j \Leftrightarrow b_i = b_j$ for all $i, j \in [\ell]$.

Each equivalence class can be represented by a unique partition of the set $[\ell]$ where each set in the partition indicates maximal set of identical values. Let us exemplify. For $\ell = 2$ we have two equivalence classes $\gamma_1 = \{\{1\}, \{2\}\}$ and $\gamma_2 = \{\{1, 2\}\}; \gamma_1$ represents all multi-indices (i, j) where $i \neq j$, while γ_2 represents all multi-indices (i, j) where i = j.

Indicator tensors. For each equivalence class $\gamma \in [n]^{\ell}/_{\sim}$ we define an order- ℓ tensor $\mathbf{B}^{\gamma} \in \mathbb{R}^{n^{\ell}}$ by setting:

Proposition. The tensors \mathbf{B}^{γ} form an orthogonal basis to the solution set of fixed point equations. The dimension of the solution set is therefore $b(\ell)$.

. We show that the space of equivariant linear layers $L: \mathbb{R}^{n^k} \to \mathbb{R}^{n^l}$ is of dimension

Let $L \in \mathbb{R}^{1 imes n^2}$ denote the matrix representing a general linear operator $L : \mathbb{R}^{n imes n} \to \mathbb{R}$ in the standard basis, then L is order invariant iff $Lvec(P^TAP) = Lvec(A)$, which is

$$\boldsymbol{L}) = \operatorname{vec}(\boldsymbol{L}) \tag{1}$$

$$\mathbf{P}^{\otimes k} \operatorname{vec}(\mathbf{L}) = \operatorname{vec}(\mathbf{L})$$
 (2)
 $\mathbf{P}^{\otimes 2k} \operatorname{vec}(\mathbf{L}) = \operatorname{vec}(\mathbf{L})$ (3)

The fixed-point equations can be equivalently formulated as $p \star L = L$, for any

(4)otherwise

Since we have a tensor \mathbf{B}^{γ} for every equivalence class γ , and the equivalence classes are in one-to-one correspondence with partitions of the set $[\ell]$, we have $b(\ell)$ tensors.

Theorem. The space of equivariant linear layers $\mathbb{R}^{n^k} \to \mathbb{R}^{n^l}$ is of dimension b(k+l)with basis elements \mathbf{B}^{γ} , where γ are equivalence classes in $([n]^{k+l}/_{\sim})$.

Figure 2. The full basis for equivariant linear layers for edge-value data $\mathbf{A} \in \mathbb{R}^{n \times n}$, for n = 5. The purely linear 15 basis elements, \mathbf{B}^{μ} , are represented by $n^2 \times n^2$ matrices.

The case of node-value input was treated in the pioneering works of [6, 4]. The general equivariant tensor case was partially treated in [3]. In [2] the authors provide an impressive generalization of the case of node-value data to several node sets.

dataset	MUTAG	PTC	PROTEINS	NCI1	NCI109	COLLAB	IMDB-B	IMDB-M		
size	188	344	1113	4110	4127	5000	1000	1500		
classes	2	2	2	2	2	3	2	3		
avg node #	# 17.9	25.5	39.1	29.8	29.6	74.4	19.7	13		
Results										
DGCNN	85.83±1.7	58.59 ± 2.5	75.54±0.9	74.44±0.5	NA	73.76±0.5	70.03±0.9	47.83±0.9		
PSCN (k=10) 88.95±4.4	62.29 ± 5.7	75±2.5	76.34±1.7	NA	72.6±2.2	71±2.3	45.23±2.8		
DCNN	NA	NA	61.29 ± 1.6	56.61 ± 1.0	NA	52.11±0.7	49.06 ± 1.4	33.49±1.4		
ECC	76.11	NA	NA	76.82	75.03	NA	NA	NA		
DGK	87.44±2.7	60.08±2.6	75.68 ± 0.5	80.31±0.5	80.32 ± 0.3	73.09±0.3	66.96±0.6	44.55 ± 0.5		
DiffPool	NA	NA	78.1	NA	NA	75.5	NA	NA		
CCN	91.64±7.2	70.62±7.0	NA	76.27±4.1	75.54 ± 3.4	NA	NA	NA		
GK	81.39±1.7	55.65 ± 0.5	71.39 ± 0.3	62.49±0.3	62.35 ± 0.3	NA	NA	NA		
RW	79.17±2.1	55.91±0.3	59.57±0.1	> 3 days	NA	NA	NA	NA		
РK	76±2.7	59.5±2.4	73.68±0.7	82.54±0.5	NA	NA	NA	NA		
WL	84.11±1.9	57.97±2.5	74.68±0.5	84.46±0.5	85.12 ± 0.3	NA	NA	NA		
FGSD	92.12	62.80	73.42	79.80	78.84	80.02	73.62	52.41		
AWE-DD	NA	NA	NA	NA	NA	73.93 ± 1.9	74.45 ± 5.8	51.54 ± 3.6		
AWE-FB	87.87±9.7	NA	NA	NA	NA	70.99 ± 1.4	73.13 ± 3.2	51.58 ± 4.6		
ours	84.61±10	59.47±7.3	75.19±4.3	73.71±2.6	72.48±2.5	77.92±1.7	71.27±4.5	48.55±3.9		

Neural message passing for quantum chemistry.

Characterizing Equivariant layers

Generalization to multiple sets

Theorem The linear space of invariant linear layers $L : \mathbb{R}^{n_1^{k_1} \times n_2^{k_2} \times \cdots \times n_m^{k_m}} \to \mathbb{R}$ is of dimension $\prod_{i=1}^m b(k_i)$. The equivariant linear layers $L : \mathbb{R}^{n_1^{k_1} \times n_2^{k_2} \times \cdots \times n_m^{k_m}} \to \mathbb{R}^{n_1^{l_1} \times n_2^{l_2} \times \cdots \times n_m^{l_m}}$ has dimension $\prod_{i=1}^{m} b(k_i + l_i)$. Orthogonal bases for these layers are listed in the paper.

Previous work

Experiments

Table 1. Graph Classification Results on the datasets from [5]

References

[1] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.

In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[2] Jason S. Hartford, Devon R. Graham, Kevin Leyton-Brown, and Siamak Ravanbakhsh.

[3] Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '15, 2015. [6] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and Alexander J Smola.

In Advances in Neural Information Processing Systems, pages 3391–3401, 2017.

Deep models of interactions across sets. In ICML, 2018.

Covariant compositional networks for learning graphs. arXiv preprint arXiv:1801.02144, 2018.

^[4] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 1(2):4, 2017.

^[5] Pinar Yanardag and S.V.N. Vishwanathan. Deep Graph Kernels.

Deep sets.