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Introduction

We consider the problem of graph learning, namely finding a funcঞonal relaঞon be-
tween input graphs (more generally, hyper-graphs) Gℓ and corresponding targets T ℓ.

Data. A (hyper-)graph data point G = (V,A) consists of a set of n nodesV, and values
A a�ached to its hyper-edges. These values are encoded in a tensor A. For example,
it is customary to represent a graph using a binary adjacency matrix A, where Aij

equals one if vertex i is connected to vertex j and zero otherwise. We denote the
set of order-k tensors by Rnk.

Data symmetry. Relabeling the nodes does not change the graph.

Task. The task at hand is construcঞng a funcঞonal relaঞon f (Aℓ) ≈ T ℓ, where f is a
neural network.

invariance. If T ℓ = tℓ is a single output response then it is natural to ask that f is
order invariant. For graph data, f is order invariant if it saঞsfies f (P TAP ) = f (A) for
any permutaঞon matrix P .

equivariance. If the targets T ℓ specify output response in a form of a tensor, T ℓ =
Tℓ, then it is natural to ask that f is order equivariant, that is, f commutes with the
renumbering of nodes operator acঞng on tensors. Using the above adjacency matrix
example f is equivariant if it saঞsfies f (P TAP ) = P Tf (A)P for every permutaঞon
matrix P .

Goal

Following the standard paradigm of neural-networks where a network f is defined
by alternaঞng composiঞons of linear layers and non-linear acঞvaঞons, we set as a
goal to characterize all linear invariant and equivariant layers.

Figure 1. Invariant network architecture. Li denotes linear equivariant layers, h denotes an
invariant layer and m is a fully connected network

Contributions

In this paper, we provide a full characterizaঞon of permutaঞon invariant and equiv-
ariant linear layers for general tensor input and output data. Our main contribuঞons
are :

1. We show that the space of equivariant linear layers L : Rnk → Rnl is of dimension
b(k + l)

2. We present a formula for an orthogonal basis for this space.
3. We show that our model can represent message passing layers [1] to an arbitrary
precision on compact sets.

b(k) is the k-th Bell number: the number of possible parঞঞons of a set of size k.

Fixed-point equations

Let L ∈ R1×n2 denote the matrix represenঞng a general linear operator L : Rn×n → R
in the standard basis, then L is order invariant iff Lvec(P TAP ) = Lvec(A), which is
equivalent to:

P ⊗ P vec(L) = vec(L) (1)

for every permutaঞon matrix P .

In the general case for order-k tensor data A ∈ Rnk over one node set, V, we have:

invariant L : P ⊗kvec(L) = vec(L) (2)
equivariant L : P ⊗2kvec(L) = vec(L) (3)

for every permutaঞon matrix P , where P ⊗k =
k︷ ︸︸ ︷

P ⊗ · · · ⊗ P .

The fixed-point equaঞons can be equivalently formulated as p ⋆ L = L, for any
permutaঞon p where ⋆ denotes the relabeling operator.

Solving the fixed point equations

Equality pa�erns. For mulঞ-indices a, b ∈ [n]ℓ we set a ∼ b iff a, b have the same
equality pa�ern, that is ai = aj ⇔ bi = bj for all i, j ∈ [ℓ].
Each equivalence class can be represented by a unique parঞঞon of the set [ℓ] where
each set in the parঞঞon indicates maximal set of idenঞcal values. Let us exemplify.
For ℓ = 2 we have two equivalence classes γ1 = {{1} , {2}} and γ2 = {{1, 2}}; γ1
represents all mulঞ-indices (i, j) where i ̸= j, while γ2 represents all mulঞ-indices
(i, j) where i = j.

Indicator tensors. For each equivalence class γ ∈ [n]ℓ/∼ we define an order-ℓ tensor
Bγ ∈ Rnℓ by seমng:

Bγ
a =


1 a ∈ γ

0 otherwise
(4)

Since we have a tensor Bγ for every equivalence class γ, and the equivalence classes
are in one-to-one correspondence with parঞঞons of the set [ℓ], we have b(ℓ) tensors.
Proposiঞon. The tensors Bγ form an orthogonal basis to the soluঞon set of fixed
point equaঞons. The dimension of the soluঞon set is therefore b(ℓ).

Characterizing Equivariant layers

Theorem. The space of equivariant linear layers Rnk → Rnl is of dimension b(k + l)
with basis elements Bγ, where γ are equivalence classes in ([n]k+l/∼).

Figure 2. The full basis for equivariant linear layers for edge-value data A ∈ Rn×n, for n = 5. The
purely linear 15 basis elements, Bµ, are represented by n2 × n2 matrices.

Generalization to multiple sets

Theorem The linear space of invariant linear layers L : Rn
k1
1 ×n

k2
2 ×···×nkm

m → R is of di-
mension ∏m

i=1 b(ki). The equivariant linear layers L : Rn
k1
1 ×n

k2
2 ×···×nkm

m → Rn
l1
1 ×n

l2
2 ×···×nlm

m has
dimension ∏m

i=1 b(ki + li). Orthogonal bases for these layers are listed in the paper.

Previous work

The case of node-value input was treated in the pioneering works of [6, 4]. The
general equivariant tensor case was parঞally treated in [3]. In [2] the authors provide
an impressive generalizaঞon of the case of node-value data to several node sets.

Experiments

Table 1. Graph Classificaঞon Results on the datasets from [5]

dataset MUTAG PTC PROTEINS NCI1 NCI109 COLLAB IMDB-B IMDB-M
size 188 344 1113 4110 4127 5000 1000 1500
classes 2 2 2 2 2 3 2 3
avg node # 17.9 25.5 39.1 29.8 29.6 74.4 19.7 13

Results
DGCNN 85.83±1.7 58.59±2.5 75.54±0.9 74.44±0.5 NA 73.76±0.5 70.03±0.9 47.83±0.9
PSCN (k=10) 88.95±4.4 62.29±5.7 75±2.5 76.34±1.7 NA 72.6±2.2 71±2.3 45.23±2.8
DCNN NA NA 61.29±1.6 56.61± 1.0 NA 52.11±0.7 49.06±1.4 33.49±1.4
ECC 76.11 NA NA 76.82 75.03 NA NA NA
DGK 87.44±2.7 60.08±2.6 75.68±0.5 80.31±0.5 80.32±0.3 73.09±0.3 66.96±0.6 44.55±0.5
DiffPool NA NA 78.1 NA NA 75.5 NA NA
CCN 91.64±7.2 70.62±7.0 NA 76.27±4.1 75.54±3.4 NA NA NA
GK 81.39±1.7 55.65±0.5 71.39±0.3 62.49±0.3 62.35±0.3 NA NA NA
RW 79.17±2.1 55.91±0.3 59.57±0.1 > 3 days NA NA NA NA
PK 76±2.7 59.5±2.4 73.68±0.7 82.54±0.5 NA NA NA NA
WL 84.11±1.9 57.97±2.5 74.68±0.5 84.46±0.5 85.12±0.3 NA NA NA
FGSD 92.12 62.80 73.42 79.80 78.84 80.02 73.62 52.41
AWE-DD NA NA NA NA NA 73.93±1.9 74.45 ±5.8 51.54 ± 3.6
AWE-FB 87.87±9.7 NA NA NA NA 70.99 ± 1.4 73.13 ±3.2 51.58 ± 4.6
ours 84.61±10 59.47±7.3 75.19±4.3 73.71±2.6 72.48±2.5 77.92±1.7 71.27±4.5 48.55±3.9
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