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Introduction

We consider the problem of graph learning, namely finding a functional relation be-
tween input graphs (more generally, hyper-graphs) G¢ and corresponding targets T°*.

Data. A (hyper-)graph data point G = (V, A) consists of a set of n nodes V, and values
A attached to its hyper-edges. These values are encoded in a tensor A. For example,
it Is customary to represent a graph using a binary adjacency matrix A, where A;;
equals one If vertex ¢ Is connected to vertex 5 and zero otherwise. We denote the
set of order-k tensors by R™.

Data symmetry. Relabeling the nodes does not change the graph.
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Task. The task at hand is constructing a functional relation f(A") ~ T, where f is a
neural network.
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invariance. If Tt = t'is a single output response then it is natural to ask that f is
order invariant. For graph data, f is order invariant if it satisfies f(PT AP) = f(A) for
any permutation matrix P.

equivariance. If the targets T specify output response in a form of a tensor, T" =
T® then it is natural to ask that f Is order equivariant, that is, f commutes with the
renumbering of nodes operator acting on tensors. Using the above adjacency matrix
example f is equivariant if it satisfies f(PT AP) = P! f(A)P for every permutation
matrix P.

Goal

-ollowing the standard paradigm of neural-networks where a network f Is defined
oy alternating compositions of linear layers and non-linear activations, we set as a
ooal to characterize all linear invariant and equivariant layers.
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Figure 1. Invariant network architecture. L; denotes linear equivariant layers, h denotes an
invariant layer and m is a fully connected network

Contributions

In this paper, we provide a full characterization of permutation invariant and equiv-
ariant linear layers for general tensor input and output data. Our main contributions
are :

1. We show that the space of equivariant linear layers L : R™ — R" is of dimension
b(k +1)
2. We present a formula for an orthogonal basis for this space.

3. We show that our model can represent message passing layers [1] to an arbitrary
precision on compact sets.

b(k) is the k-th Bell number: the number of possible partitions of a set of size k.

Fixed-point equations

Let L € R™" denote the matrix representing a general linear operator L : R™" — R
in the standard basis, then L is order invariant iff Lvec(P? AP) = Lvec(A), which is
equivalent to:

P ® P vec(L) = vec(L) (1)

for every permutation matrix P.

In the general case for order-k tensor data A € R™ over one node set, V, we have:

P®"vec(L) = vec(L) (2)
P®**vec(L) = vec(L) (3)

invariant L
equivariant L :

k
for every permutation matrix P, where P =P ® --- ® P.

The fixed-point equations can be equivalently formulated as p x L = L, for any
permutation p where x denotes the relabeling operator.

Solving the fixed point equations

Equality patterns. For multi-indices a, b € [n]® we set a ~ b iff a, b have the same
equality pattern, thatis a; = a; < b; = b; for all 4, 5 € [4].

—ach equivalence class can be represented by a unique partition of the set [£] where
each set Iin the partition indicates maximal set of identical values. Let us exemplify.
For ¢ = 2 we have two equivalence classes v = {{1},{2}} and v» = {{1,2}}; 1
represents all multi-indices (i, 7) where @ # j, while v, represents all multi-indices
(2,7) where 1 = j.

Indicator tensors. For each equivalence class v € [n]*/. we define an order-¢ tensor
B” € R by setting:
1
S @
0 otherwise

Since we have a tensor B' for every equivalence class v, and the equivalence classes
are in one-to-one correspondence with partitions of the set [¢|, we have b({) tensors.

Proposition. The tensors B” form an orthogonal basis to the solution set of fixed
point equations. The dimension of the solution set is therefore b(f).

Characterizing Equivariant layers

Theorem. The space of equivariant linear layers R” — R is of dimension b(k + )
with basis elements B”, where ~ are equivalence classes in ([n]**/.).
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—igure 2. The full basis for equivariant linear layers for edge-value data A € R™", for n = 5. The
hurely linear 15 basis elements, B, are represented by n? x n? matrices.

Generalization to multiple sets
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Theorem The linear space of invariant linear layers L : Rum>m’ 5 R s of di-
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mension 117, b(k;). The equivariant linear layers L : R i g Rl hgg

dimension 1", b(k; + [;). Orthogonal bases for these layers are listed in the paper.

Previous work

The case of node-value input was treated in the pioneering works of |6, 4]. The
general equivariant tensor case was partially treated in [3]. In [2] the authors provide
an impressive generalization of the case of node-value data to several node sets.

Experiments

Table 1. Graph Classification Results on the datasets from [5]

dataset MUTAG  PTC PROTEINS NCI1 NCI109  COLLAB IMDB-B IMDB-M

size 188 344 1113 4110 4127 5000 1000 1500
classes 2 2 2 2 2 3 2 3
avg node # 17.9 25.5 39.1 29.8 29.6 /4.4 19.7 13

Results
DGCNN  85.83+1.7 58.59+£2.5 /5.5440.9 /74.4440.5 NA  /3.76+£0.5 70.03+£0.9 4/.834+0.9
PSCN (k=10) 88.954+4.4 62.29+£5.7 /5x2.5 /76.34+1.7 NA  /2.6L£2.2 /1+2.3 45.23+2.8
DCNN NA NA 61.29+1.6 56.61+ 1.0 NA 52.114+0.7 49.06+14 33.49+1.4
-CC /6.11 NA NA /6.82 /5.03 NA NA NA
DGK 8/.44+2.7 60.08+2.6 /5.68+£0.5 80.31£+0.5 80.32+0.3 /3.09+0.3 66.96+0.6 44.55+0.5
DIffPool NA NA /8.1 NA NA /5.5 NA NA
CCN 91.644+/.2 70.62+/.0 NA /76.2/+4.1 /5.54+3.4 NA NA NA
GK 81.39+1.7 55.65+0.5 /1.39+0.3 62.494+0.3 62.354+0.3 NA NA NA
RW /9.17+£2.1 55.91£0.3 59.57/+£0.1 > 3 days NA NA NA NA
PK /6x2./ 595424 /3.68+0./ 82.54+0.5 NA NA NA NA
VWL 84.11+1.95/7.9/+£2.5 7/4.684+0.5 84.46+0.5 85.12+0.3 NA NA NA
FGSD 92.12 62.80 /3.472 /9.80 /38.84 80.02 /3.62 52.41
AWE-DD NA NA NA NA NA /3.93x1.9 /445 £+£5.8 51.54 £+ 3.6
AWE-FB 8/.8/£9.7 NA NA NA NA /0.99 £ 1.4 /3.13 £3.2 51.58 £ 4.6
ours 84.61+1059.4/+/.3 /5.19+4.3 /3.714+2.6 /248425 //.924+1.7 /1.2/+£45 48.5543.9
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