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Motivation and Overview
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Set+Elements symmetry
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Main challenge: What architecture is optimal when elements of the set have their own symmetries?
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Both the set and its elements have symmetries. 



Deep Symmetric sets
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Set symmetry: 
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Element symmetry: 

Translation invariance/equivariance
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Applications

Modalities
1D signals 2D images 3D pointclouds Graph



This paper
A principled approach for learning sets of complex elements (graphs, point clouds, images)


Characterize maximally expressive linear layers that respect the symmetries (DSS layers)


Prove universality results


Experimentally demonstrate that DSS networks outperform baselines



Previous work



Deep sets [Zaheer et al. 2017]
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Previous work: information sharing

Aittala and Durand, ECCV 2018


Sridhar et al., NeuriPS 2019


Liu et al., ICCV 2019
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Our approach



Invariance
Many Learning tasks are invariant to natural transformations (symmetries)


More formally. Let  be a subgroup:


 is invariant if , for all  


e.g. image classification 


H ≤ Sn

f : ℝn → ℝ f(τ ⋅ x) = f(x) τ ∈ H
τ

f f

“Cat”



Equivariance
Let  be a subgroup:


Equivariant if , 


e.g. edge detection 


H ≤ Sn

f(τ ⋅ x) = τ ⋅ f(x)

τ

τ
f f



Invariant neural networks

⋯

Equivariant FC Invariant 

• Invariant by construction



Deep Symmetric Sets

 with symmetry group 


Want to be invariant/equivariant to both  and the ordering 


Formally the symmetry group is 

x1, …, xn ∈ ℝd G ≤ Sd

G

H = Sn × G ≤ Snd

G



Main challenges

• What is the space of linear equivariant layers for specific ?
H = SN × G



• What is the space of linear equivariant layers for a given ?


• Can we compute these operators efficiently?
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• What is the space of linear equivariant layers for a given ?


• Can we compute these operators efficiently?


• Do we lose expressive power?

H = SN × G

-invariant networksH

-invariant continuous functionsH

Continuous functions

Gap?

Main challenges



Theorem: Any linear −equivariant layer  is of the form





where  are linear -equivariant functions


We call these layers Deep Sets for Symmetric elements layers (DSS)


SN × G L : ℝn×d → ℝn×d

L(X)i = LG
1 (xi) + ∑

j≠i

LG
2 (xj)

LG
1 , LG

2 G

-equivariant layersH



DSS for images

 are images


 is the group of  circular translations


-equivariant layers are convolutions
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DSS for images

Siamese part


Information sharing part
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Expressive power
Theorem 

If G-equivariant networks are universal appoximators for G-equivariant functions, then so 
are DSS networks for -equivariant functions.


     

SN × G



Expressive power
Theorem 

If G-equivariant networks are universal appoximators for G-equivariant functions, then so are 
DSS networks for -equivariant functions.


• Main tool: 


• Noether’s Theorem (Invariant theory)


• For any finite group , the ring of invariant polynomials   is finitely generated. 


• Generators can be used to create continuous unique encodings for elements in 

SN × G

H ℝ[x1, . . . , xn]H

ℝn×d /H



Results



 Signal classification



Image selection



Shape selection



Conclusions

A general framework for learning sets of complex elements


Generalizes many previous works


Expressivity results


Works well in many tasks and data types


