

On Learning Sets of Symmetric Elements Haggai Maron^[1] Or Litan^[2] Gal Chechik^[1,3] Ethan Fetaya^[3]

[1] Nvidia Research [2] Stanford University [3] Bar-Ilan University

Motivation and Overview

Set Symmetry

Input set

Previous work (DeepSets, PointNet) targeted training a deep network over sets

Set+Elements symmetry

Both the set and its elements have symmetries.

Input set

Main challenge: What architecture is optimal when elements of the set have their own symmetries?

Deep Symmetric sets

Input image set

Output

Set symmetry: Order invariance/equivariance

Set symmetry: Order invariance/equivariance

Set symmetry: Order invariance/equivariance

Element symmetry: Translation invariance/equivariance

Element symmetry: Translation invariance/equivariance

Element symmetry: Translation invariance/equivariance

Applications

1D signals

2D images

3D pointclouds

Graph

A principled approach for learning sets of complex elements (graphs, point clouds, images)

Characterize maximally expressive linear layers that respect the symmetries (**DSS layers**)

Prove universality results

Experimentally demonstrate that **DSS networks** outperform baselines

This paper

Previous work

Deep sets [Zaheer et al. 2017]

Deep sets [Zaheer et al. 2017]

Siamese

Deep sets [Zaheer et al. 2017]

Siamese

Features

Siamese

Deep sets [Zaheer et al.]

Features

Deeps sets block

Previous work: information sharing

Aittala and Durand, ECCV 2018

Sridhar et al., NeuriPS 2019

Liu et al., ICCV 2019

Information sharing layer

Our approach

Invariance

Many Learning tasks are invariant to natural transformations (symmetries) More formally. Let $H \leq S_n$ be a subgroup: $f: \mathbb{R}^n \to \mathbb{R}$ is **invariant** if $f(\tau \cdot x) = f(x)$, for all $\tau \in H$ e.g. image classification

Equivariance

Let $H \leq S_n$ be a subgroup:

Equivariant if $f(\tau \cdot x) = \tau \cdot f(x)$,

e.g. edge detection

Invariant neural networks

Invariant by construction

Equivariant

Invariant FC

Deep Symmetric Sets

- $x_1, \ldots, x_n \in \mathbb{R}^d$ with symmetry group $G \leq S_d$
- Want to be invariant/equivariant to both G and the ordering
- Formally the symmetry group is $H = S_n \times G \leq S_{nd}$

• What is the space of linear equivariant layers for specific $H = S_N \times G$?

• What is the space of linear equivariant layers for a given $H = S_N \times G$?

• Can we compute these operators efficiently?

• What is the space of linear equivariant layers for a given $H = S_N \times G$?

Can we compute these operators efficiently?

• Do we lose expressive power?

H-invariant networks

H-invariant continuous functions

Continuous functions

• What is the space of linear equivariant layers for a given $H = S_N \times G$?

Can we compute these operators efficiently?

• Do we lose expressive power?

H-equivariant layers

Theorem: Any linear $S_N \times G$ -equivariant layer $L : \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$ is of the form

L(X)

where L_1^G , L_2^G are linear *G*-equivariant functions

We call these layers **Deep Sets for Symmetric elements layers** (DSS)

$$D_i = L_1^G(x_i) + \sum_{\substack{j \neq i}} L_2^G(x_j)$$

- x_1, \ldots, x_n are images
- G is the group of 2D circular translations
- G-equivariant layers are convolutions

Single DSS layer

 x_1, \ldots, x_n are images

G is the group of 2D circular translations

G-equivariant layers are convolutions

Single DSS layer

 x_1, \ldots, x_n are images

G is the group of 2D circular translations

G-equivariant layers are convolutions

 x_1, \ldots, x_n are images

G is the group of 2D circular translations

G-equivariant layers are convolutions

Siamese part

Information sharing part

Expressive power

Theorem

If G-equivariant networks are universal appoximators for G-equivariant functions, then so are DSS networks for $S_N \times G$ -equivariant functions.

Expressive power

Theorem

If G-equivariant networks are universal appoximators for G-equivariant functions, then so are DSS networks for $S_N \times G$ -equivariant functions.

- Main tool:
 - Noether's Theorem (Invariant theory)

• For any finite group H, the ring of invariant polynomials $\mathbb{R}[x_1, \ldots, x_n]^H$ is finitely generated.

• Generators can be used to create continuous unique encodings for elements in $\mathbb{R}^{n \times d}/H$

Results

Signal classification

Test Accuracy vs. training set size

Noise type and strength	Late Aggregation	Early Aggregation					
	Siamese+DS	DSS (sum)	DSS (max)	DSS (Sridahr)	DSS (Ait		
Gaussian $\sigma = 10$	$77.2\% \pm 0.37$	78.48% ± 0.48	$77.99\% \pm 1.1$	$76.8\% \pm 0.25$	78.34% =		
Gaussian $\sigma = 30$	$65.89\% \pm 0.66$	$68.35\% \pm 0.55$	$67.85\% \pm 0.40$	$61.52\% \pm 0.54$	66.89% =		
Gaussian $\sigma = 50$	$59.24\% \pm 0.51$	$62.6\% \pm 0.45$	$61.59\% \pm 1.00$	$55.25\% \pm 0.40$	62.02% =		
Occlusion 10%	$82.15\% \pm 0.45$	$83.13\% \pm 1.00$	83.27 ± 0.51	$83.21\% \pm 0.338$	83.19% =		
Occlusion 30%	$77.47\% \pm 0.37$	$78\%\pm0.89$	$78.69\% \pm 0.32$	$78.71\% \pm 0.26$	78.27% =		
Occlusion 50%	$76.2\%\pm0.82$	77.29% ± 0.40	$76.64\% \pm 0.45$	$77.04\% \pm 0.75$	77.03% =		

Image selection

Dataset	Data type	Late Aggregation	Early Aggregation			
		Siamese+DS	DSS (sum)	DSS (max)	DSS (Sridhar)	DSS (Aittala)
UCF101	Images	$36.41\% \pm 1.43$	$76.6\% \pm 1.51$	$76.39\% \pm 1.01$	$60.15\% \pm 0.76$	77.96% ± 1.69
Dynamic Faust	Point-clouds	$22.26\% \pm 0.64$	$42.45\% \pm 1.32$	$28.71\% \pm 0.64$	54.26 % ± 1.66	$26.43\% \pm 3.92$
Dynamic Faust	Graphs	$26.53\% \pm 1.99$	$44.24\% \pm 1.28$	$30.54\% \pm 1.27$	53.16 % ± 1.47	$26.66\% \pm 4.25$

Point clouds

Shape selection

Graphs

Conclusions

A general framework for learning sets of complex elements

Generalizes many previous works

Expressivity results

Works well in many tasks and data types