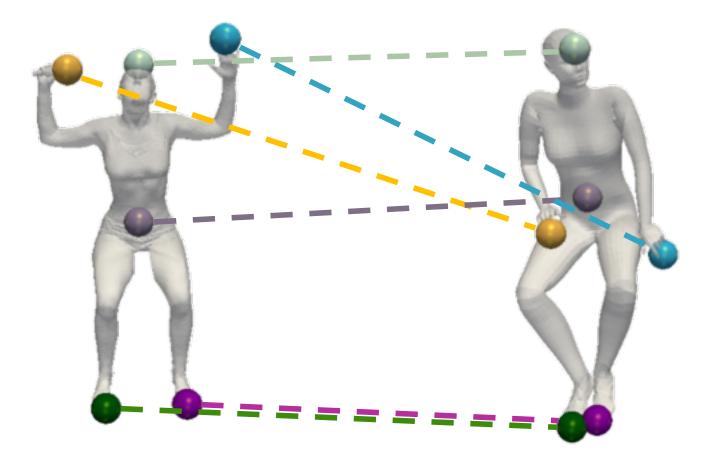
A Flexible, Scalable and Provably Tight Relaxation for Matching Problems

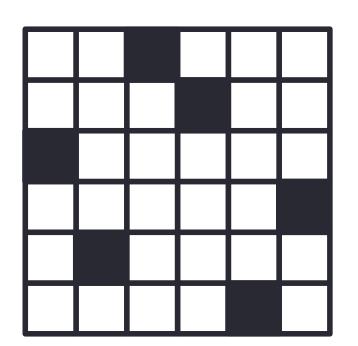
Nadav Dym*, Haggai Maron*, Yaron Lipman Weizmann Institute of Science

*equal contributors

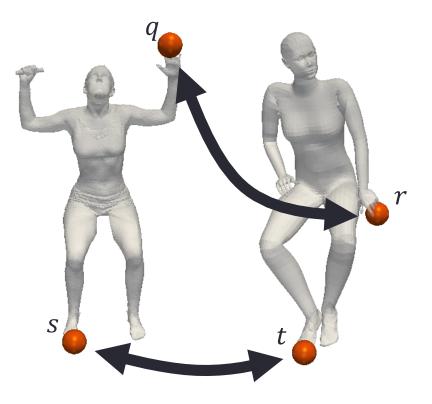
Matching



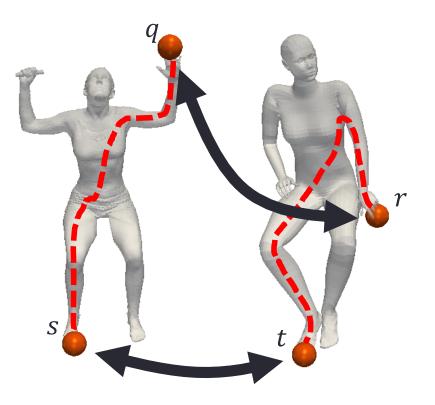
Representing Correspondences

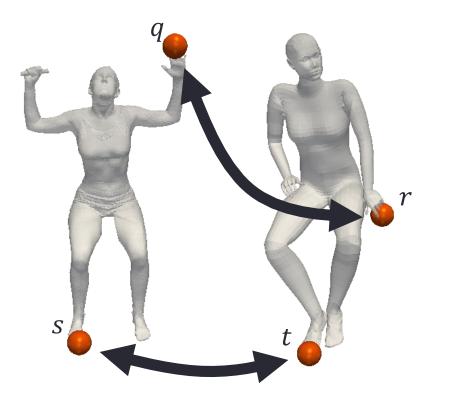


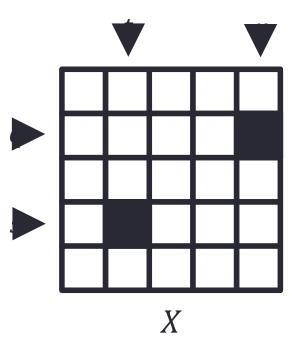
penalty for a pair of matches = $W_{qr,st}$

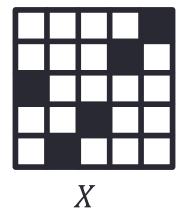


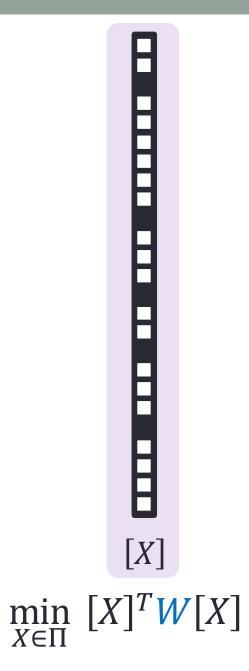
$$W_{qr,st} = |d_{qs} - d_{rt}|$$



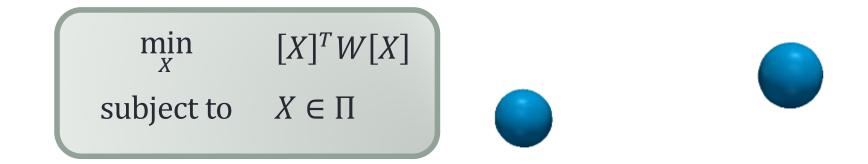




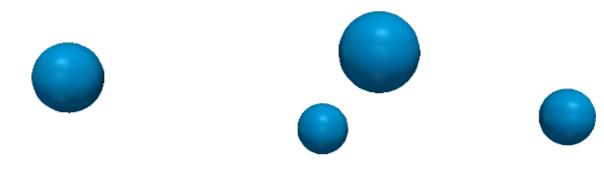




The Challenge



- Non-convex objective
- Non-convex domain
- NP-hard problem

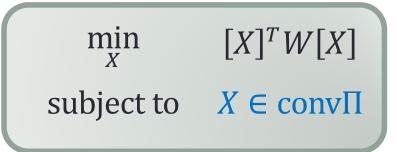


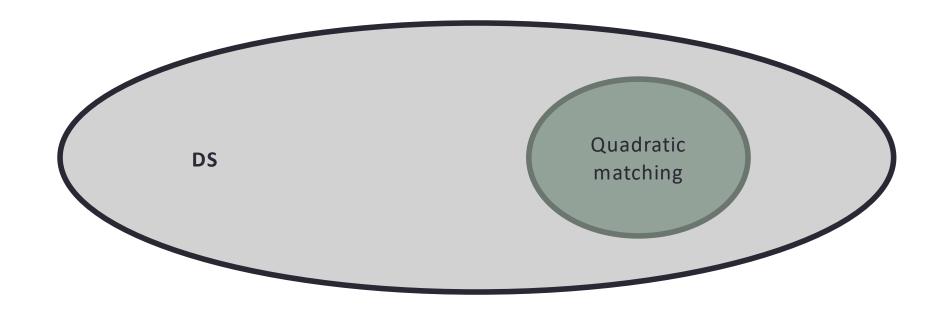
 $\min_{X} [X]^{T} W[X]$
subject to $X \in \Pi$

• Tractable for $W \ge 0$

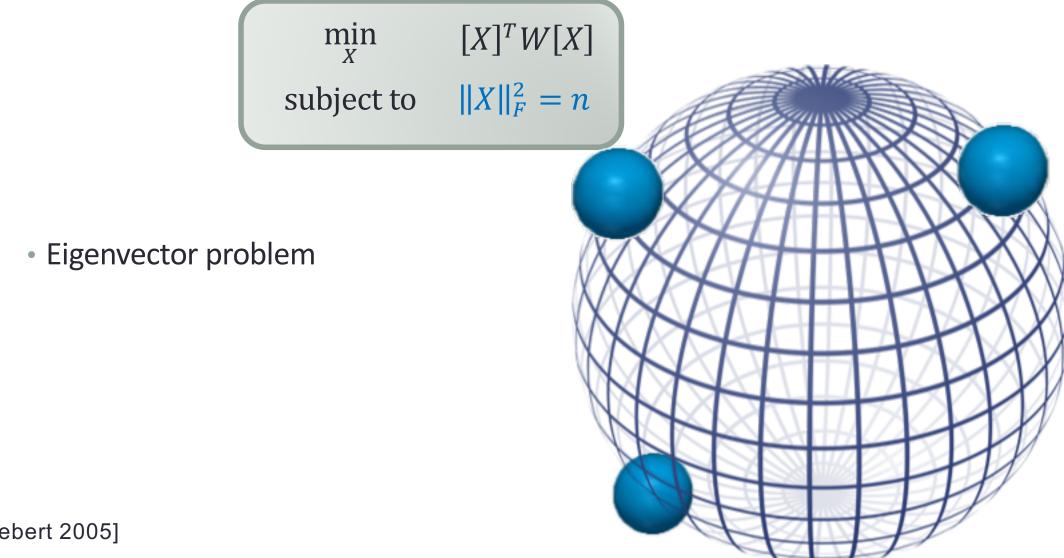
 $X \in \operatorname{conv}\Pi$

Doubly Stochastic Relaxation



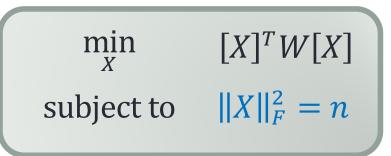


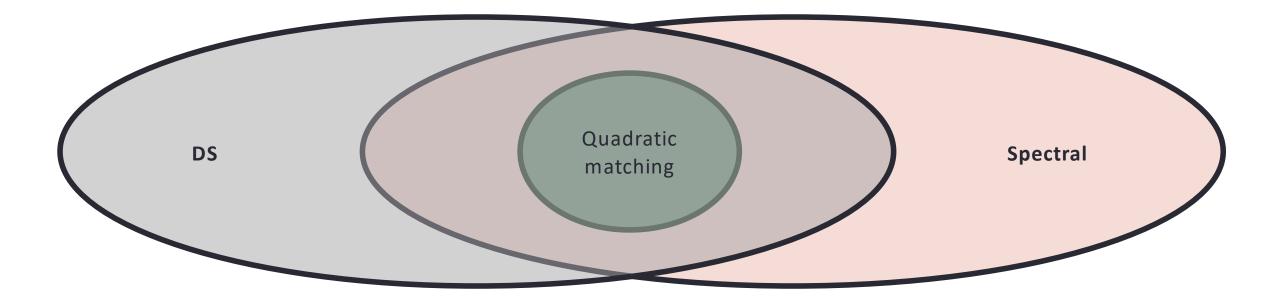
Spectral Relaxation



[Leordeanu & Hebert 2005]

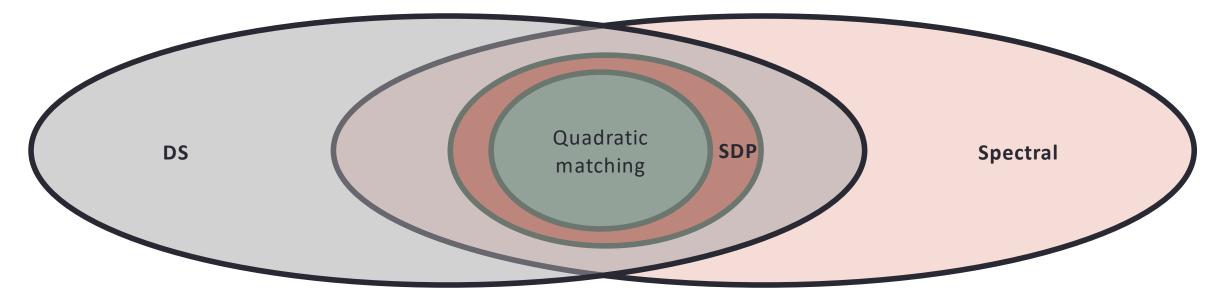
Spectral Relaxation





SDP Relaxation

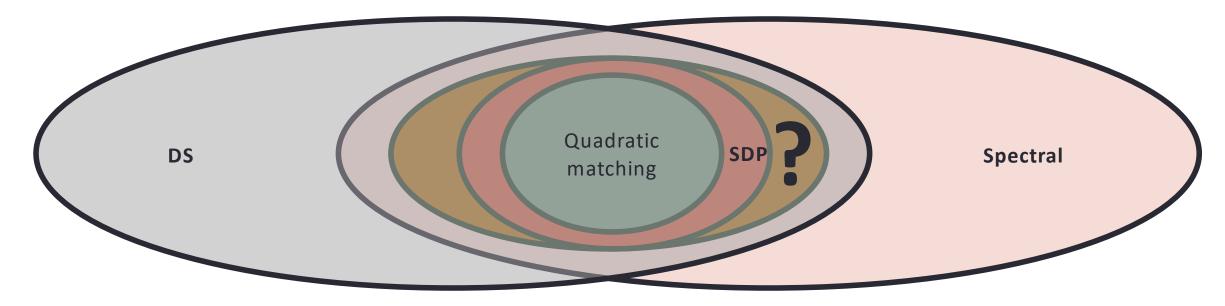
- Tight!
- Not scalable $O(n^4)$ variables



[[]Zhao et al. 1998, Kezurer et al. 2015]

Question:

Can we find a tight relaxation without compromising scalability?

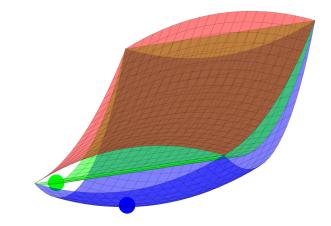


[Kezurer et al. 2015]

Our approach

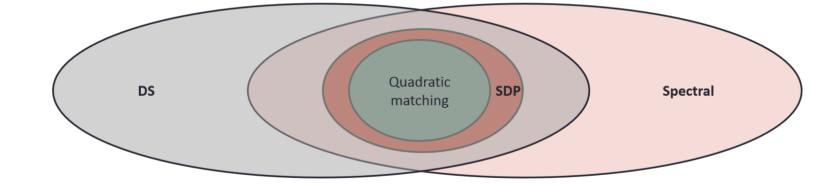
• Construct a parametric family of equivalent problems

• Choose optimal parameter value for relaxation



$$a = \lambda_{min}(W|_{aff(\Pi_n)})$$

• Place in relaxation hierarchy



Equivalent formulations

 $[X]^T W[X] - a(||X||_F^2 - n)$

$X \in \Pi_n$

Relaxation

$$\underbrace{ [X]^T W[X] - a(||X||_F^2 - n) }_{E(X,a)}$$

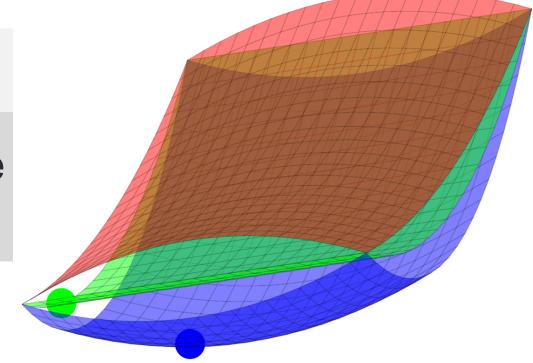
 $X \in \operatorname{conv}(\Pi_n)$

Goal: Find <u>convex</u> relaxation that generates <u>maximal lower bound</u>

Optimal parameter value

Lemma

For $X \in conv(\Pi_n)$, b > a we have E(X,b) > E(X,a)



\Rightarrow Take maximal a s.t. problem is convex

Optimal parameter value

Solution (1)

Take
$$a = \lambda_{min}(W)$$

$$\Rightarrow \text{Hessian is } W - \lambda_{min} I \Rightarrow \text{convex}$$

Can we do better?

[Fogel et al. 2013, 2015]

Optimal parameter value

Solution (2)

Take
$$a = \overline{\lambda_{min}} = \lambda_{min} (W|_{aff(\Pi_n)})$$

 \Rightarrow convex on $aff(\Pi_n)$

Recap

• We have found an optimal relaxation in the family we proposed. We call it **DS++**:

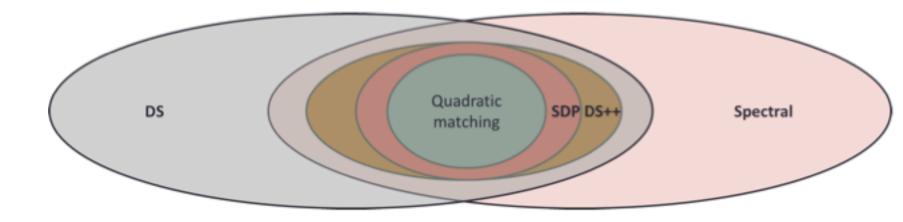
$$\min_{X} [X]^{T} W[X] - \overline{\lambda_{min}} (||X||_{F}^{2} - n)$$

subject to $x \in conv(\Pi_{n})$

- Is it a good relaxation?
 - We show it is
 - Method: compare all relaxations by "embedding" them in a high dim space

• Establish a partial order on relaxations

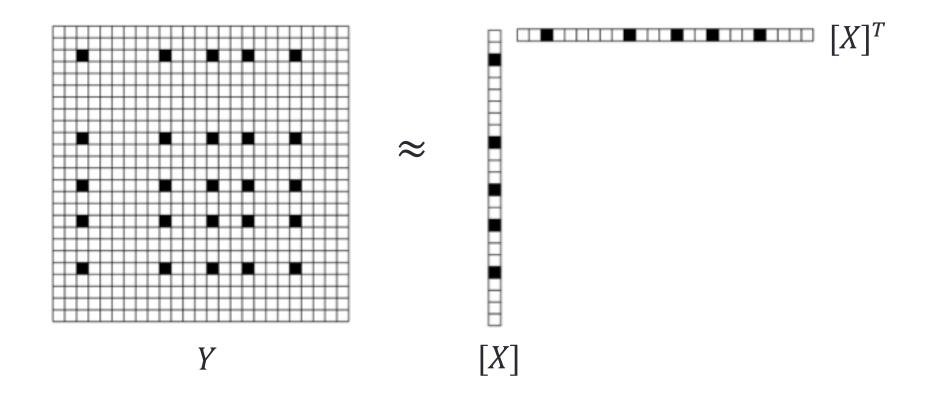
• In our case: partial order == relaxation domain inclusion



• Need to move to a common domain!

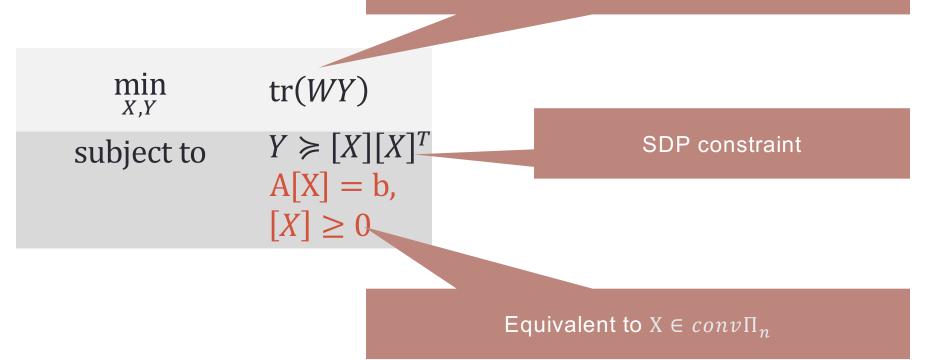
[Kezurer et al. 2015]

- New variable (X, Y)
- Y represents quadratic monomials in X



• The **doubly stochastic relaxation** as SDP:

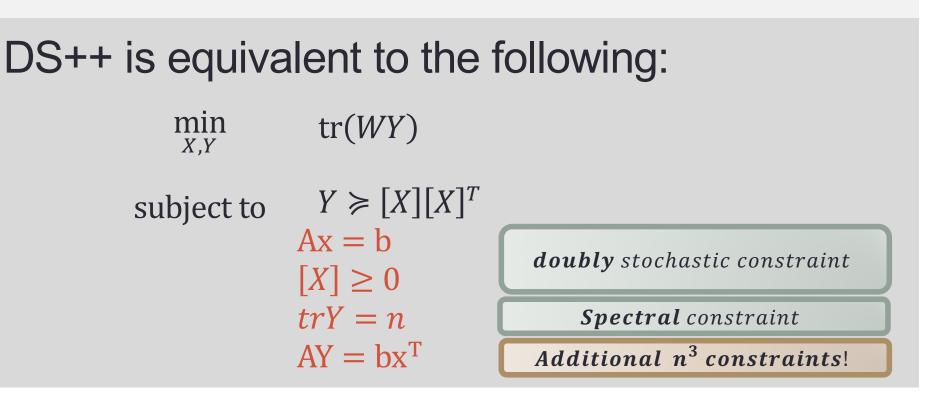
Similar to $\operatorname{tr}(WY) = \operatorname{tr}(W[X][X]^T) = [X]^T W[X]$

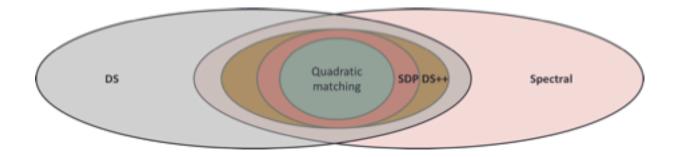


• The **spectral relaxation** as SDP:

 $\min_{X,Y} \quad tr(WY)$ subject to $Y \ge [X][X]^T$ trY = n

Theorem





Corollary (1)

DS++ is more accurate than both the **DS** and **Spectral** relaxations!

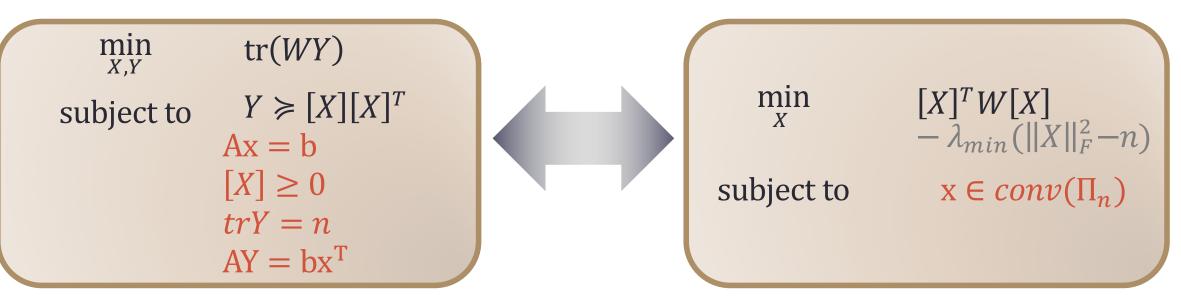
Corollary (2)

DS++ is less accurate than [Kezurer 15']

SDP relaxation in n^4 variables

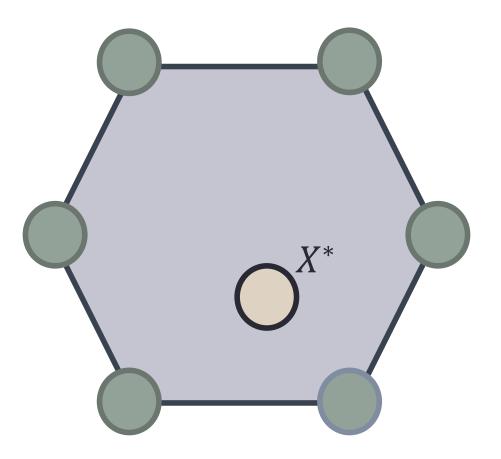
quadratic program in n^2 variables

Fast!

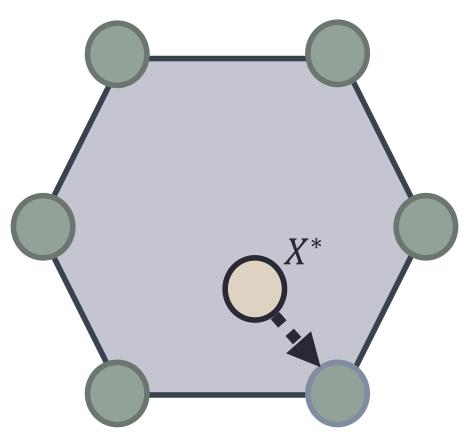


Projection

• **Problem**: what if X^* is not a permutation matrix?



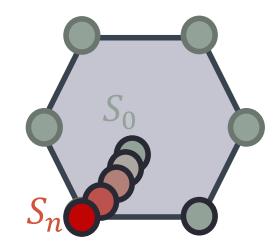
- **Problem:** what if *X*^{*} is not a permutation matrix?
- **Common solution:** *L*₂ projection does not take functional into account



• Our solution :

- Solve convex relaxation E(X, a) for optimal $a_0 = \lambda_{min}$.
- gradually deform objective from convex to concave by increasing a

convex	concave
$E(X, a_0)$	 $E(X, a_n)$

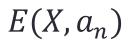


- Concave objective guaranteed to get a permutation!
- We use [Solomon et al. 2016] for optimization

convex

concave

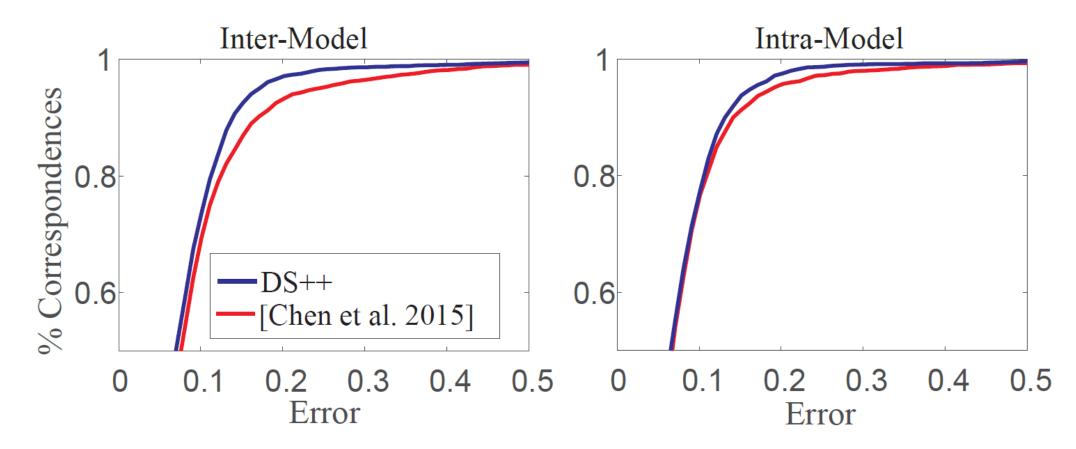
 $E(X, a_0)$

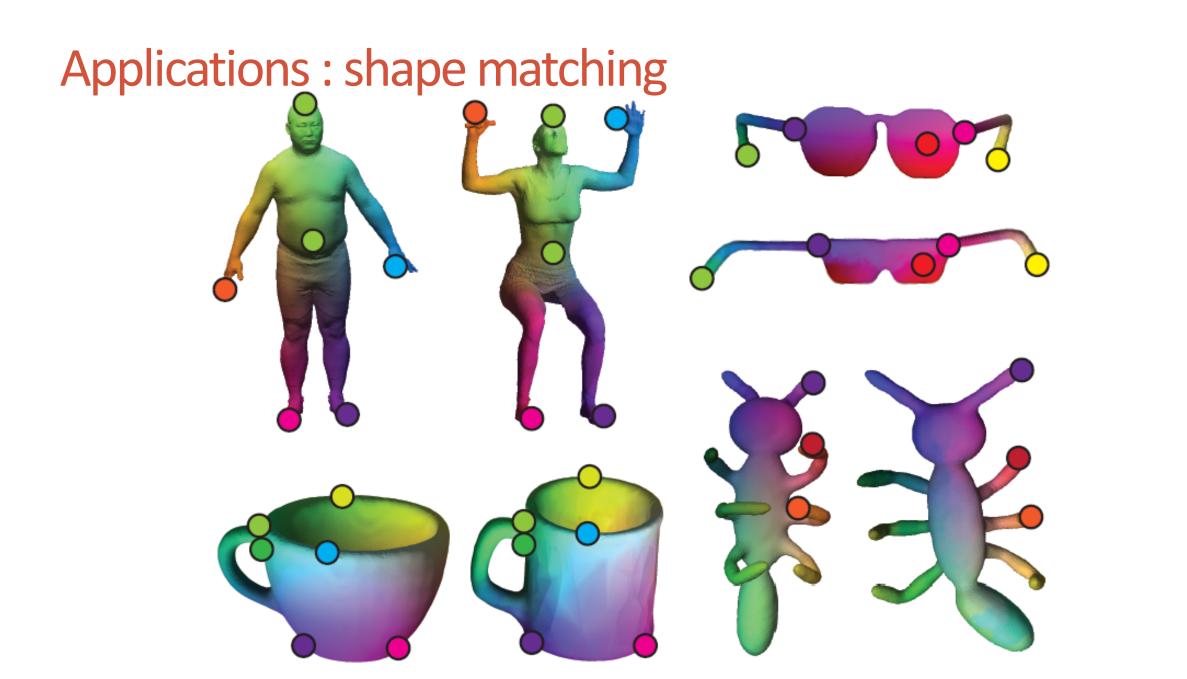


Applications

Applications: shape matching

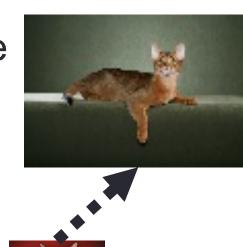
Applications : shape matching



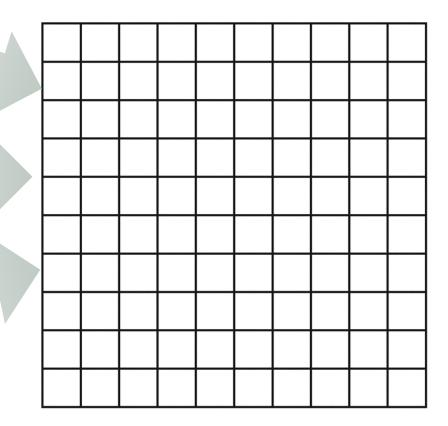


Applications : image arrangement

Image metric space



Euclidean grid

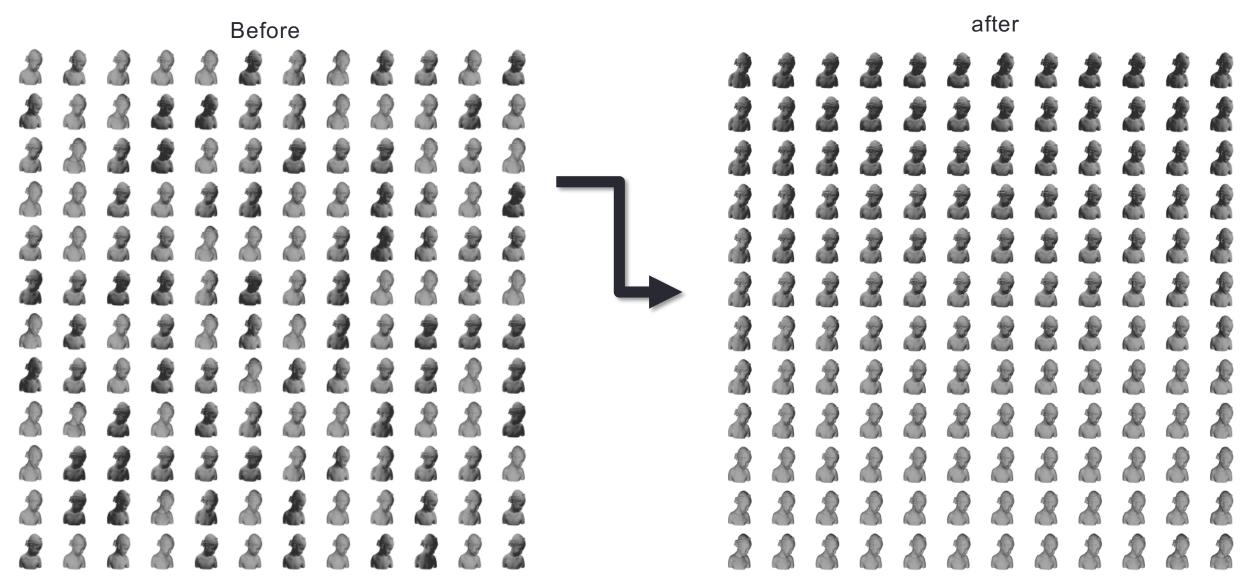


Applications : image ordering

Applications : image ordering

Temples

Applications : image ordering



Conclusion

- More accurate relaxation at the same complexity
- Natural projection method
- Works on all convex and concave energies

Limitations / future work

- Best relaxation in n^2 variables?
- Partial matching
- Optimization with Frank-Wolfe scheme

The End

• Code is available online:

http://www.wisdom.weizmann.ac.il/~haggaim/

Support

- ERC Starting Grant (SurfComp)
- Israel Science Foundation
- I-CORE
- Thanks for listening!

