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Introduction

There is an ongoing research effort aimed at finding Graph Neural Network (GNN) archi-
tectures that are both expressive and pracࢼcal. Recently, [2, 3] have analysed the expressive
power of Message-Passing neural networks by comparing it to the Weisfeiler-Lehman (WL)
hierarchy: a hierarchy of graph isomorphism tests with increasing complexity and expressive
power. The main result is that message-passing networks have limited expressive power
and are at most as powerful as the first WL test (1-WL).

Goal

Find GNN architectures that are provably more powerful than message passing GNNs:

1. Find neural network architectures that are as powerful as k-WL test.
2. Due to the increasing complexity in the hierarchy, find a simple and scalable

architecture that is provably more powerful than message passing.

Weisfeiler-Lehman graph isomorphism tests

The WL tests are a family of iteraঞve algorithms used for tesঞng graph isomorphism. Let:

G = (V, E, d) be a colored graph, |V | = n.
Σ is a set of colors.
d : V → Σ is a funcঞon that assigns a color to each vertex in V .

1-WL. At each iteraঞon the coloring of each node is updated according to its current color
and the colors of its neighbors. Upon reaching a stable coloring a global feature of the
graph is calculated in the form of a color histogram.
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k-WL. The k-WL test is a generalizaঞon of 1-WL: it re-colors each k-tuple of nodes in the
graph at each iteraঞon according to its neighborhood’s coloring. For k ≥ 2, k + 1-WL is
strictly more powerful than k-WL.

k-order graph networks (k-GN)

A permutaঞon invariant family of neural network architectures devised in [1]:

Li : Rnki×ai → Rnki+1×ai+1 are Sn-equivariant linear layers (mapping ki degree tensors to ki+1
degree tensors) composed of the full linear Sn-equivariant basis characterized in [1], h is an
Sn-invariant layer and m is a mulঞ-layer perceptron (MLP). The order of the network is the
maximal tensor degree maxi∈[d+1] ki = k.

Contributions

1. We show that the discriminaঞve power of k-GNs is at least as the power of k-WL. This
implies that for k ≥ 3 these models are more powerful than message-passing neural
networks. However, this expressiveness comes at the cost of having to compute and
store high order tensors.

2. We propose a simple and scalable model architecture that is provably more powerful
than message-passing networks, having the discriminaঞve power of at least 3-WL.

2-WL    <    3-WL   <  …  <    k-WL   < … 
Color 

Refinement 2-WL-folklore

Message passing      
k-GN

Our  
model

       -GNO(n4)
Poly 2-GN2-GN

Simple network architecture with 3-WL power

We propose the following neural network architecture:
F = m ◦ h ◦ Bd ◦ Bd−1 · · · ◦ B1 (1)

where m is an MLP, h is an invariant layer, and B1, . . . , Bd are blocks with the structure and
code as in Figure 1. The block consists of (i) applying 3 different MLPs to the feature dimen-
sion of the input (ii) mulঞplying the output of two MLPs feature-wise and (iii) concatenaঞng
the output of the last MLP.

Figure 1. A basic block of a simple and powerful (3-WL) graph neural network.

Theorem. Given two graphs G = (V, E, d), G′ = (V ′, E ′, d′) that can be disঞnguished by
the 3-WL graph isomorphism test (i.e., the test generates different global features forG and
G′), there exists a network F (equaঞon 1) so that F (G) ̸= F (G′). On the other direcঞon for
every two isomorphic graphs G ∼= G′ and F (equaঞon 1), F (G) = F (G′).

Intuiঞon. We give intuiঞon to the improved power gained by the addiঞon of matrix mulঞ-
plicaঞon by showing that this model can disঞnguish between the two regular graphs that
appear above, which are 2-WL indisঞnguishable. We consider a constant iniঞal coloring of
the graph G with adjacency matrix A. A network with 2 blocks can compute A3 and then
take its trace (using the invariant layer); trace(A3) computes the number of cycles of length
3. Now, the graph on the right has 0 such cycles while the graph on the le[ has 12.

k-GNs are as powerful as k-WL

Theorem. Given two graphs G = (V, E, d), G′ = (V ′, E ′, d′) that can be disঞnguished by
the k-WL graph isomorphism test, there exists a k-order network F so that F (G) ̸= F (G′).
On the other direcঞon for every two isomorphic graphs G ∼= G′ and k-order network F ,
F (G) = F (G′).

Proof idea. The proof of is based on showing that k-GNs can implement the different parts
of the k-WL algorithm. Namely, neighborhood aggregaঞon and color encoding. This can
be done by learning an injecঞve funcঞon on mulঞsets. Each k-tuple has k neighborhoods,
where each neighborhood coloring is represented as a mulঞset. We show that a family
of polynomials composed with summaঞon and ঞling over the nodes dimension is an injec-
ঞve mulঞset funcঞon that can be approximated by k-GNs. Finally, the encoding is simply
concatenaঞng the output of the above funcঞon for each neighborhood.

Experiments

Table 1. Graph Classificaঞon Results on the datasets from [4]

dataset MUTAG PTC PROTEINS NCI1 NCI109 COLLAB IMDB-B IMDB-M
size 188 344 1113 4110 4127 5000 1000 1500
classes 2 2 2 2 2 3 2 3
avg node # 17.9 25.5 39.1 29.8 29.6 74.4 19.7 13

Results
GK 81.39±1.7 55.65±0.5 71.39±0.3 62.49±0.3 62.35±0.3 NA NA NA
RW 79.17±2.1 55.91±0.3 59.57±0.1 > 3 days NA NA NA NA
PK 76±2.7 59.5±2.4 73.68±0.7 82.54±0.5 NA NA NA NA
WL 84.11±1.9 57.97±2.5 74.68±0.5 84.46±0.5 85.12±0.3 NA NA NA
FGSD 92.12 62.80 73.42 79.80 78.84 80.02 73.62 52.41
AWE-DD NA NA NA NA NA 73.93±1.9 74.45 ± 5.8 51.54 ±3.6
AWE-FB 87.87±9.7 NA NA NA NA 70.99 ± 1.4 73.13 ±3.2 51.58 ± 4.6
DGCNN 85.83±1.7 58.59±2.5 75.54±0.9 74.44±0.5 NA 73.76±0.5 70.03±0.9 47.83±0.9
PSCN (k=10) 88.95±4.4 62.29±5.7 75±2.5 76.34±1.7 NA 72.6±2.2 71±2.3 45.23±2.8
DCNN NA NA 61.29±1.6 56.61± 1.0 NA 52.11±0.7 49.06±1.4 33.49±1.4
ECC 76.11 NA NA 76.82 75.03 NA NA NA
DGK 87.44±2.7 60.08±2.6 75.68±0.5 80.31±0.5 80.32±0.3 73.09±0.3 66.96±0.6 44.55±0.5
DiffPool NA NA 78.1 NA NA 75.5 NA NA
CCN 91.64±7.2 70.62±7.0 NA 76.27±4.1 75.54±3.4 NA NA NA
Invariant Graph Networks 83.89±12.95 58.53±6.86 76.58±5.49 74.33±2.71 72.82±1.45 78.36±2.47 72.0±5.54 48.73±3.41
GIN 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 NA 80.2±1.9 75.1±5.1 52.3±2.8
1-2-3 GNN 86.1± 60.9± 75.5± 76.2± NA NA 74.2± 49.5±
Ours 1 90.55±8.7 66.17±6.54 77.2±4.73 83.19±1.11 81.84±1.85 80.16±1.11 72.6±4.9 50±3.15
Ours 2 88.88±7.4 64.7±7.46 76.39±5.03 81.21±2.14 81.77±1.26 81.38±1.42 72.2±4.26 44.73±7.89
Ours 3 89.44±8.05 62.94±6.96 76.66±5.59 80.97±1.91 82.23±1.42 80.68±1.71 73±5.77 50.46±3.59
Rank 3rd 2nd 2nd 2nd 2nd 1st 6th 5th

Methods above the line are not based on neural networks. Ours 1, Ours 2, Ours 3 stand
for three slightly different architectures that use our basic block (details in the paper).
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Equivariant layers evaluaঞon.
We performed a baseline comparison on the
NCI1 dataset [4]: (i) our suggested model,
denoted Matrix Product (MP); (ii) matrix
product + full linear basis from [1] (MP+LIN);
(iii) only full linear basis (LIN); and (iv) MLP ap-
plied to the feature dimension. Although all
methods (excluding MLP) are able to achieve a zero training error, the (MP) and (MP+LIN)
enjoy be�er generalizaঞon than the linear basis of [1]. Note that (MP) and (MP+LIN) are
comparable, however (MP) is considerably more efficient.
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