Provably Powerful Graph Networks
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Introduction

There is an ongoing research effort aimed at finding Graph Neural Network (GNN) archi-
tectures that are both expressive and practical. Recently, |2, 3] have analysed the expressive
hower of Message-Passing neural networks by comparing it to the Weisfeiler-Lehman (WL)
nierarchy: a hierarchy of graph isomorphism tests with increasing complexity and expressive
bower. The main result Is that message-passing networks have limited expressive power
and are at most as powerful as the first WL test (1-WL).

Goal

Find GNN architectures that are provably more powerful than message passing GNNSs:

1. Find neural network architectures that are as powerful as k-WL test.
2. Due to the increasing complexity in the hierarchy, find a simple and scalable
architecture that is provably more powerful than message passing.

Weisfeiler-Lehman graph isomorphism tests

The WL tests are a family of iterative algorithms used for testing graph isomorphism. Let:

= G =(V, E,d) be a colored graph, |V| = n.
= > Is a set of colors.
= d:V — X is afunction that assigns a color to each vertex in V.

1-WL. At each iteration the coloring of each node is updated according to its current color
and the colors of its neighbors. Upon reaching a stable coloring a global feature of the
ograph is calculated in the form of a color histogram.
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kE-WL. The k-WL test is a generalization of 1-WL: it re-colors each k-tuple of nodes in the
oraph at each iteration according to its neighborhood’s coloring. For k& > 2, k + 1-WL is
strictly more powerful than k-VWL.

1-WL Update Step
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k-order graph networks (k-GN)

A permutation invariant family of neural network architectures devised in [1]:

‘>L1‘> L2'> L 2 Ld

L;: R >ai _y RAHIXain gre S,-equivariant linear layers (mapping k; degree tensors to k;;
degree tensors) composed of the full linear S,,-equivariant basis characterized in [1], A is an
S,-invariant layer and m is a multi-layer perceptron (MLP). The order of the network is the
maximal tensor degree max;c g1 ki = k.

Contributions

1. We show that the discriminative power of k-GNs is at least as the power of k-WL. This
implies that for k£ > 3 these models are more powerful than message-passing neural
networks. However, this expressiveness comes at the cost of having to compute and
store high order tensors.

2. We propose a simple and scalable model architecture that is provably more powerful
than message-passing networks, having the discriminative power of at least 3-VVL.
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Simple network architecture with 3-WL power

We propose the following neural network architecture:
F=mohoBjoB; {---0B; (1)

where m I1s an MLP, h Is an invariant layer, and By, ..., By are blocks with the structure and
code asin Figure 1. The block consists of (i) applying 3 different MLPs to the feature dimen-
sion of the input (ii) multiplying the output of two MLPs feature-wise and (iii) concatenating
the output of the last MLP.

M L Ps
1 v def forward(self, 1input):

ML P, 2 mlpl = self.MLP1(input)
3 mlp2 = self.MLP2(input)

} 4 mlp3 = self.MLP3(input)
5
.A ®—> 6 mult = torch.matmul(mlpl,mlp2)

4
8 return torch.cat((mult,mlp3),dim=1)
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Figure 1. A basic block of a simple and powerful (3-WL) graph neural network.

Theorem. Given two graphs G = (V, E,d), G' = (V', E',d’) that can be distinguished by
the 3-WL graph isomorphism test (i.e., the test generates different global features for G and
G'), there exists a network F' (equation 1) so that F'(G) # F(G'). On the other direction for
every two isomorphic graphs G = G' and F (equation 1), F(G) = F(G").

Intuition. We give intuition to the improved power gained by the addition of matrix multi-
plication by showing that this model can distinguish between the two regular graphs that
appear above, which are 2-WL indistinguishable. We consider a constant initial coloring of
the graph G with adjacency matrix A. A network with 2 blocks can compute A° and then
take its trace (using the invariant layer): trace(A4°) computes the number of cycles of length
3. Now, the graph on the right has O such cycles while the graph on the left has 12.

k-GNs are as powerful as k-WL

Theorem. Given two graphs G = (V, E,d), G' = (V', E',d’) that can be distinguished by
the k-WL graph isomorphism test, there exists a k-order network F' so that F(G) # F(G").
On the other direction for every two isomorphic graphs G = G’ and k-order network F,

F(G) = F(GQ").

Proof idea. The proof of is based on showing that k-GNs can implement the different parts
of the k-WL algorithm. Namely, neighborhood aggregation and color encoding. This can
be done by learning an injective function on multisets. Each k-tuple has k neighborhoods,
where each neighborhood coloring Is represented as a multiset. We show that a family
of polynomials composed with summation and tiling over the nodes dimension is an injec-
five multiset function that can be approximated by k-GNs. Finally, the encoding is simply
concatenating the output of the above function for each neighborhood.

Experiments

Table 1. Graph Classification Results on the datasets from [4]

dataset MUTAG PTC PROTEINS NCI1 NCI109 COLLAB IMDB-B IMDB-M

size 188 344 1113 4110 4127 5000 1000 1500
classes 2 2 2 2 2 3 2 3
avg node # 17.9 25.5 39.1 29.8 29.6 /4.4 19.7 13

Results

GK 831.39+1.7 55.65+0.5 7/1.39+£0.3 62.49+0.3 62.354+0.3 NA NA NA
RW /91721 5591+£0.3 59.5/£0.1 > 3 days NA NA NA NA
PK /6+2.7 595424 73.6840.7 82.54+0.5 NA NA NA NA
WL 84.11+1.9 5/7.9/+£25 74.68+0.5 84.46+0.5 85.12+0.3 NA NA NA
FGSD 92.12 62.80 /3.42 79.80 /8.84 80.02 /3.62 5241
AWE-DD NA NA NA NA NA 7/3.93+£1.9 7445 +£ 5.8 51.54 +3.6
AWE-FB 8/.87/x9.7 NA NA NA NA 70.99 £ 1.4 /73.13 £3.2 51.58 £4.6
DGCNN 85.83+1.7 58.59+25 7/554+£0.9 /4.4440.5 NA /3.76x0.5 70.03£0.9 4/.83+0.9
PSCN (k=10) 88.95+4.4 62.29+5.7 /54+2.5 76.344+1.7 NA  72.6+2.2 /1+2.3 45.23+£2.8
DCNN NA NA 61.29+1.6 56.61+ 1.0 NA 52.11+0.7 49.06+14 33.49+14
ECC /76.11 NA NA /6.82 75.03 NA NA NA
DGK 8/44+2./7 60.08+2.6 /5.68£0.5 80.31+0.5 80.32+0.3 /3.09+0.3 66.96+0.6 445540.5
DiffPool NA NA 78.1 NA NA /5.5 NA NA
CCN 91.64+7.2 70.62+7.0 NA 76.27+4.1 7554434 NA NA NA
Invariant Graph Networks 83.894+12.95 58.53+6.86 /6.58+5.49 /4.33+2.71 72.82+1.45 /8.36+2.47 72.0+£554 48.73+£3.41
GIN 894+56 64.6+£/0 /62+£28 82./£1.7 NA  80.2+1.9 75.1£5.1 52.3+2.8
1-2-3 GNN 86.1+ 60.9+ /5.5+ 762+ NA NA 742+ 49 5+
Ours 1 90.554+8.7 66.1/x6.54 77.2+4.73 83.19+1.11 81.84+1.85 80.16+1.11 /2.6+4.9 50+3.15
Ours 2 88.88+7.4 64.7+7.46 76.39+5.03 81.214+2.14 81.774+1.26 81.38+1.42 /2.24+4.26 44.734+7.89
Ours 3 89.44+8.05 62.94+6.96 /6.66+5.59 80.9/£1.91 82.23+1.42 80.68+1.71 /3+5.77 50.46+3.59
Rank 3rd 2nd 2nd 2nd 2nd 1st 6th 5th

Methods above the line are not based on neural networks. Ours 1, Ours 2, Ours 3 stand
for three slightly different architectures that use our basic block (details in the paper).

Equivariant layers evaluation. o CTrain Validation

We performed a baseline comparisononthe o
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denoted Matrix Product (MP); (i) matrix 2 07/ —MLP
product + full linear basis from [1] (MP+LIN); 0-6[f'*""'”""““'“”" WW
(iii) only full linear basis (LIN); and (iv) MLP ap- 100 100

plied to the feature dimension. Although all
methods (excluding MLP) are able to achieve a zero training error, the (MP) and (MP+LIN)

enjoy better generalization than the linear basis of [1]. Note that (MP) and (MP+LIN) are
comparable, however (MP) is considerably more efficient.
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